Home About us Contact | |||
Ethanol Withdrawal (ethanol + withdrawal)
Selected AbstractsQT Interval Dispersion and Cardiac Sympathovagal Balance Shift in Rats With Acute Ethanol WithdrawalALCOHOLISM, Issue 2 2010Seiko Shirafuji Background:, Dysregulation of autonomic nervous system function and impaired homogeneity of myocardial repolarization are 2 important mechanisms for the genesis of ventricular arrhythmias in nonalcoholic subjects. Our previous study suggested that acute ethanol withdrawal promoted the shift of cardiac sympathovagal balance toward sympathetic predominance and reduced the vagal tone, which were related to a higher incidence of ventricular arrhythmia and related death. However, the homogeneity of myocardial repolarization and its relation with the cardiac sympathovagal balance are unknown, especially in alcoholic subjects. The aim of the present study was to clarify these points. Methods:, Male Wistar rats were treated with a continuous ethanol liquid diet for 49 days, and then subjected to 1-day withdrawal and 1-day withdrawal with 7-day carvedilol (can block the sympathetic nervous system completely via ,1, ,2, and , adrenergic receptors) pretreatment. The cardiac sympathovagal balance and homogeneity of myocardial repolarization were evaluated based on the heart rate variability (HRV) and QT interval dispersion (QTd: dynamic changes in QT interval duration). Results:, The increase in QTd was observed only in rats at 1-day withdrawal, but not in nonalcoholic, continuous ethanol intake, and 1-day withdrawal with 7-day carvedilol pretreatment rats. At 1-day withdrawal, the low-frequency power/high-frequency power (LF/HF) ratio in HRV was elevated and correlated with the QTd. The increased QTd and elevated LF/HF ratio were normalized by the 7-day carvedilol pretreatment in rats at 1-day ethanol withdrawal. Conclusions:, In rats with an abrupt termination of the chronic continuous ethanol intake, the homogeneity of myocardial repolarization impaired and correlated with the cardiac sympathovagal balance. Carvedilol pretreatment is associated with a reduction in both the QTd and LF/HF ratio, raising the possibility that the cardiac sympathovagal balance shift may be responsible for the impaired homogeneity of myocardial repolarization, and that ,-blocker pretreatment may decrease the mortality risk during alcoholic withdrawal. [source] Sensitization, Duration, and Pharmacological Blockade of Anxiety-Like Behavior Following Repeated Ethanol Withdrawal in Adolescent and Adult RatsALCOHOLISM, Issue 3 2009Tiffany A. Wills Background:, Repeated ethanol withdrawal sensitizes anxiety-like behavior in adult rats and causes anxiety-like behavior and decreased seizure thresholds in adolescent rats. Current experiments determined if adolescent rats exhibit sensitized anxiety-like behavior, the duration of this effect, if drug pretreatments blocked these effects, and if these effects differed from those seen in adults. Methods:, Male adolescent rats received three 5-day cycles of 2.5% ethanol diet (ED) separated by two 2-day withdrawal periods, continuous 15 days of 2.5%ED, or a single 5-day cycle of 2.5%ED. Male adult rats received three 5-day cycles of either 2.5% or 3.5%ED. These groups were tested 5 hours into the final withdrawal for social interaction (SI) deficits (an index of anxiety-like behavior). Ethanol intake was monitored throughout and blood concentrations were obtained from separate groups of rats. Additionally, adolescent rats were tested for SI 1, 2, 7, 14, and 18 days and adults 1 and 2 days after the final withdrawal. Some adolescent rats were also pretreated with the CRF1 antagonist CP-154,526, the 5-HT1A agonist buspirone, or the benzodiazepine receptor antagonist flumazenil during the first 2 withdrawals. Results:, SI was reduced in adolescent rats following repeated withdrawals of 2.5%ED while neither a continuous or single cycle ED exposure caused this effect. Adult rats also had reduced SI following repeated withdrawals from both 2.5% and 3.5%ED. This effect was present up to 1 week following the final withdrawal in adolescents but returned to baseline by 1 day in adults. CP-154,526, buspirone, or flumazenil prevented this reduction in SI in adolescent rats. Conclusions:, Adolescent rats exhibit sensitized anxiety-like behavior following repeated withdrawals at ED concentrations similar to those used in adults. However, this effect is longer lasting in adolescent rats. Drugs modulating CRF, 5-HT, or GABA systems during initial withdrawals prevent the development of anxiety-like behavior otherwise manifest during a final withdrawal in adolescent rats. [source] Disruptions in Sleep Time and Sleep Architecture in a Mouse Model of Repeated Ethanol WithdrawalALCOHOLISM, Issue 7 2006Lynn M. Veatch Background: Insomnia and other sleep difficulties are perhaps the most common and enduring symptoms reported by alcoholics undergoing detoxification, especially those alcoholics with a history of multiple detoxifications. While some studies have reported sleep disruptions in animal models after chronic ethanol exposure, the reports are inconsistent and few address sleep architecture across repeated ethanol exposures and withdrawals. The present study evaluated sleep time and architecture in a well-characterized mouse model of repeated chronic ethanol exposure and withdrawal. Methods: C57BL6/J mice were fitted with electrodes in frontal cortex, hippocampus, and nuchal muscle for collection of continuous electroencephalogram (EEG)/electromyogram (EMG) data. Baseline data were collected, after which mice received 4 cycles of 16-hour exposure to alcohol (ethanol: EtOH) vapor separated by 8-hour periods of withdrawal or similar handling in the absence of EtOH vapor. Ethanol-exposed mice attained a blood ethanol concentration of 165 mg%. Upon completion of vapor exposure, EEG/EMG data were again collected across 4 days of acute withdrawal. Data were subjected to automated analyses classifying 10-second epochs into wake, non,rapid eye movement (REM) sleep, or REM sleep states. Results: Mice in withdrawal after chronic EtOH exposure showed profound disruptions in the total time asleep, across the acute withdrawal period. Sleep architecture, the composition of sleep, was also disrupted with a reduction in non-REM sleep concomitant with a profound increase in REM sleep. While altered sleep time and non-REM sleep loss resolved by the fourth day of withdrawal, the increase in REM sleep ("REM rebound") persisted. Conclusions: These results mirror those reported for the human alcoholic and demonstrate that EtOH withdrawal,induced sleep disruptions are evident in this mouse model of alcohol withdrawal,induced sensitization. This mouse model may provide mechanisms to investigate fully the high correlation between unremitting sleep problems and increased risk of relapse documented clinically. [source] Differential Adaptations in GABAergic and Glutamatergic Systems During Ethanol Withdrawal in Male and Female RatsALCOHOLISM, Issue 6 2005P E. Alele Background: There are significant and consistent sex differences in recovery from ethanol withdrawal in our animal model of ethanol dependence. We have also observed significant and varied sex differences in subunit protein levels of ,-aminobutyric acid A (GABAA) and the N-metheyl-D-aspartate subtype of glutamate receptors occurring with ethanol dependence and withdrawal. Considering the major role of these two systems as targets of ethanol, we wanted to explore additional possible mechanisms underlying changes in GABAergic and glutamatergic responses after chronic ethanol exposure. Therefore, the objective of the present study was to examine GABAergic- and glutamatergic-associated proteins at three days of ethanol withdrawal, when female rats appear to have largely recovered but male rats still display robust signs of withdrawal. Methods: Male and female rats were fed 6% ethanol in a nutritionally complete liquid diet for 14 days according to a pair-fed design; withdrawal was initiated by replacement of the diet with chow. At three days of withdrawal, the cerebral cortex and hippocampus were dissected for use in Western blot analysis. The paired design was maintained throughout all experimental procedures. Results: At three days of ethanol withdrawal, we found region-specific and sex-selective alterations in levels of GAD (glutamic acid decarboxylase, GABA synthetic enzyme), GABA and glutamate transporters, and the synapse-associated proteins HSP70, PSD-95, and synaptophysin. There were also several significant differences in transporter function at this time that varied between males and females. Conclusions: Taken together, these findings show differential adaptations of GABAergic and glutamatergic neurotransmission between female and male rats that are associated with withdrawal recovery. This suggests that selective withdrawal-induced neuroadaptations in regulation of these systems' activities underlie, at least in part, sex differences in withdrawal recovery between male and female rats. [source] Alcohol-Induced Neurodegeneration: When, Where and Why?ALCOHOLISM, Issue 2 2004Fulton T. Crews Abstract: This manuscript reviews the proceedings of a symposium organized by Drs. Antonio Noronha and Fulton Crews presented at the 2003 Research Society on Alcoholism meeting. The purpose of the symposium was to examine recent findings on when alcohol induced brain damage occurs, e.g., during intoxication and/or during alcohol withdrawal. Further studies investigate specific brain regions (where) and the mechanisms (why) of alcoholic neurodegeneration. The presentations were (1) Characterization of Synaptic Loss in Cerebella of Mature and Senescent Rats after Lengthy Chronic Ethanol Consumption, (2) Ethanol Withdrawal Both Causes Neurotoxicity and Inhibits Neuronal Recovery Processes in Rat Organotypic Hippocampal Cultures, (3) Binge Drinking-Induced Brain Damage: Genetic and Age Related Effects, (4) Binge Ethanol-Induced Brain Damage: Involvement of Edema, Arachidonic Acid and Tissue Necrosis Factor , (TNF,), and (5) Cyclic AMP Cascade, Stem Cells and Ethanol. Taken together these studies suggest that alcoholic neurodegeneration occurs through multiple mechanisms and in multiple brain regions both during intoxication and withdrawal. [source] Polyamines Contribute to Ethanol Withdrawal-Induced Neurotoxicity in Rat Hippocampal Slice Cultures Through Interactions With the NMDA ReceptorALCOHOLISM, Issue 7 2003D. Alex Gibson Background: Several reports demonstrate that withdrawal from long-term ethanol exposure is associated with significant central nervous system neurotoxicity, produced at least in part by increased activity of N -methyl-d-aspartate receptors (NMDARs). Recent evidence suggests that elevations in the synthesis and release of the polyamines spermidine and spermine, which are known modulators of NMDARs, contribute to the increased activity of the receptor during ethanol withdrawal. Therefore, the goal of this investigation was to examine what role, if any, spermidine and spermine have in the generation of ethanol withdrawal-induced neurotoxicity. Methods: Neurotoxicity (measured as fluorescence of the cell death indicator propidium iodide, PI), glutamate release (measured by high-performance liquid chromatography analysis), and polyamine concentrations (by high-performance liquid chromatography) were measured in rat hippocampal slice cultures undergoing withdrawal from chronic (10 day) ethanol exposure (100 mM). In addition, the effects of the polyamine synthesis inhibitor di-fluoro-methyl-ornithine (DFMO, 0.1,100 nM) and NMDAR polyamine-site antagonists ifenprodil, arcaine, and agmatine (1 nM-100 ,M) on ethanol withdrawal- and NMDA-induced neurotoxicity were measured. Results: Ethanol withdrawal significantly increased glutamate release (peaking at 18 hr with a 53% increase), increased concentrations of putrescine and spermidine (136% and 139% increases, respectively, at 18 hr), and produced significant cytotoxicity in the CA1 hippocampal region (56% increase in PI staining relative to controls) of the cultures. The cell death produced by ethanol withdrawal was significantly inhibited by ifenprodil (IC50= 14.9 nM), arcaine (IC50= 37.9 nM), agmatine (IC50= 41.5 nM), and DFMO (IC50= 0.6 nM). NMDA (5 ,M) significantly increased PI staining in the CA1 region of the hippocampal cultures (365% relative to controls), but ifenprodil, arcaine, agmatine, and DFMO all failed to significantly affect this type of toxicity. Conclusions: These data implicate a role for polyamines in ethanol withdrawal-induced neurotoxicity and suggest that inhibiting the actions of polyamines on NMDARs may be neuroprotective under these conditions. [source] Effects of venlafaxine on ethanol withdrawal syndrome in ratsFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2004Esra Sa Abstract The present study was designed to investigate the effects of venlafaxine, a serotonin and noradrenaline reuptake inhibitor (SNRI), on ethanol withdrawal syndrome in rats. Adult male Wistar rats (187,319 g) were used for the study. Ethanol (7.2%, v/v) was given to rats by a liquid diet for 21 days. Control rats were pair-fed an isocaloric liquid diet containing sucrose as a caloric substitute to ethanol. Venlafaxine (5, 10, 20 and 40 mg/kg) and saline were injected to rats intraperitoneally just before ethanol withdrawal. After the 2nd, 4th and 6th hour of ethanol withdrawal, rats were observed for 5 min, and withdrawal signs that included locomotor hyperactivity, agitation, stereotyped behaviour and wet dog shakes were recorded or rated. A second series of injections was given at the 6th hour after the first one, and rats were then tested for audiogenic seizures. Venlafaxine produced some inhibitory effects on locomotor hyperactivity, stereotypic behaviours and wet dog shakes. However, a two-way anova of the data did not indicate any significant effect. It reduced the incidence of the audiogenic seizures at the 6th hour of ethanol withdrawal. Venlafaxine (20 mg/kg) also prolonged the latency of the seizures significantly. Our results suggest that acute venlafaxine treatment has limited beneficial effects on ethanol withdrawal syndrome in rats. [source] Perception of sweet taste is important for voluntary alcohol consumption in miceGENES, BRAIN AND BEHAVIOR, Issue 1 2008Y. A. Blednov To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: ,-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol. [source] Defective Translocation of PKC, in EtOH-Induced Inhibition of Mg2+ Accumulation in Rat HepatocytesALCOHOLISM, Issue 9 2010Lisa M. Torres Background:, Rats chronically fed ethanol for 3 weeks presented a marked decreased in total hepatic Mg2+ content and required approximately 12 days to restore Mg2+ homeostasis upon ethanol withdrawal. This study was aimed at investigating the mechanisms responsible for the EtOH-induced delay. Methods:, Hepatocytes from rats fed ethanol for 3 weeks (Lieber-De Carli diet,chronic model), rats re-fed a control diet for varying periods of time following ethanol withdrawal, and age-matched control rats fed a liquid or a pellet diet were used. As acute models, hepatocytes from control animals or HepG2 cells were exposed to varying doses of ethanol in vitro for 8 minutes. Results:, Hepatocytes from ethanol-fed rats presented a marked inhibition of Mg2+ accumulation and a defective translocation of PKC, to the cell membrane. Upon ethanol withdrawal, 12 days were necessary for PKC, translocation and Mg2+ accumulation to return to normal levels. Exposure of control hepatocytes or HepG2 cells to a dose of ethanol as low as 0.01% for 8 minutes was already sufficient to inhibit Mg2+ accumulation and PKC, translocation for more than 60 minutes. Also in this model, recovery of Mg2+ accumulation was associated with restoration of PKC, translocation. The use of specific antisense in HepG2 cells confirmed the involvement of PKC, in modulating Mg2+ accumulation. Conclusions:, Translocation of PKC, isoform to the hepatocyte membrane is essential for Mg2+ accumulation to occur. Both acute and chronic ethanol administrations inhibit Mg2+ accumulation by specifically altering PKC, translocation to the cell membrane. [source] Altered Motor Cortex Excitability to Magnetic Stimulation in Alcohol Withdrawal SyndromeALCOHOLISM, Issue 4 2010Raffaele Nardone Background:, Alcohol addiction is a complex brain disease caused by alterations in crucial neurotransmitter systems, including gamma-aminobutyric acid (GABA) and glutamate. These disturbances could be revealed by changes in cortical excitability parameters, as assessed by transcranial magnetic stimulation (TMS). This study was aimed to further investigate the complex pathophysiology of alcohol withdrawal syndrome (AWS). Methods:, Motor cortex excitability was examined in 13 subjects with AWS in a mild predelirial state, in 12 chronic alcoholics and in 15 age-matched control subjects, using a range of TMS protocols. Central motor conduction time, resting and active motor threshold, duration of the cortical silent period, short latency intracortical inhibition (SICI), and intracortical facilitation (ICF) to paired TMS were examined. Results:, Intracortical facilitation was significantly increased in the AWS patients when compared with the chronic alcoholics and the control subjects. The other TMS parameters did not differ significantly from the controls. Administration of a single oral dose of the glutamatergic antagonist riluzole in a subgroup of 8 patients significantly reduced ICF; motor threshold and SICI were not affected by riluzole. Conclusion:, Transcranial magnetic stimulation shows a selective increase in intracortical facilitation after ethanol withdrawal. Our findings support the theory that altered glutamatergic receptor function plays an important role in the pathogenesis of human alcohol withdrawal. This study provides further physiological evidence that antiglutamatergic approaches represent an efficacious alternative for treating alcohol withdrawal symptoms. [source] Revisiting Intragastric Ethanol Intubation as a Dependence Induction Method for Studies of Ethanol Reward and Motivation in RatsALCOHOLISM, Issue 3 2010Simone Braconi Background:, The purpose of this study was to re-examine intragastric ethanol intubation as a dependence induction method that effectively induces physical dependence upon ethanol over a short time period, is devoid of intrinsic stress artifacts, inexpensive, and easy to implement. Methods:, Male Wistar rats were subjected to ethanol dependence induction via intragastric ethanol intubation. Ethanol solution (final concentration 20%, made up in a dietary liquid vehicle consisting of powdered milk, sucrose, and water) was intubated 4 times per day, at 4-hour intervals, for 6 consecutive days (for a total of 10 g/kg/day). The utility of this procedure was evaluated for inducing physical dependence, determined by daily and final withdrawal ratings. Anxiety-like behavior associated with ethanol dependence history was examined using the elevated plus-maze (EPM) test, conducted 5 days after ethanol withdrawal. To evaluate whether potential stress-like effects of intragastric intubation per se produce lasting effects on behavior, experimentally naive rats were compared with vehicle-intubated rats for anxiety-like behavior on the EPM. Results:, Blood alcohol levels reached stable levels between 200 and 250 mg%, measured 1 hour after the second and third ethanol intubation on days 2, 4, and 6. Ethanol-treated rats developed significant somatic withdrawal signs, recorded daily between 10 and 12 hours after the last ethanol administration. At 5 days postwithdrawal, ethanol-treated rats showed significant anxiety-like behavior, measured by decreased open arm time and open arm entries on the EPM, compared with vehicle controls. Additionally, ethanol postdependent rats showed decreased open arm time compared with experimentally naive rats. EPM performance did not differ between vehicle-intubated and naive rats. No withdrawal seizures were observed and mortality rate was near zero. Conclusions:, These findings suggest that intragastric ethanol administration produces a behavioral profile consistent with ethanol dependence (i.e., significant withdrawal signs after termination of ethanol exposure and elevated anxiety-like behavior persisting beyond completion of physical withdrawal), and that the intubation procedure itself does not produce lasting nonspecific anxiety-like effects. Thus, under the conditions employed here, this procedure provides an effective tool for inducing and evaluating the consequences of ethanol dependence in animal models of ethanol reward and motivation. [source] QT Interval Dispersion and Cardiac Sympathovagal Balance Shift in Rats With Acute Ethanol WithdrawalALCOHOLISM, Issue 2 2010Seiko Shirafuji Background:, Dysregulation of autonomic nervous system function and impaired homogeneity of myocardial repolarization are 2 important mechanisms for the genesis of ventricular arrhythmias in nonalcoholic subjects. Our previous study suggested that acute ethanol withdrawal promoted the shift of cardiac sympathovagal balance toward sympathetic predominance and reduced the vagal tone, which were related to a higher incidence of ventricular arrhythmia and related death. However, the homogeneity of myocardial repolarization and its relation with the cardiac sympathovagal balance are unknown, especially in alcoholic subjects. The aim of the present study was to clarify these points. Methods:, Male Wistar rats were treated with a continuous ethanol liquid diet for 49 days, and then subjected to 1-day withdrawal and 1-day withdrawal with 7-day carvedilol (can block the sympathetic nervous system completely via ,1, ,2, and , adrenergic receptors) pretreatment. The cardiac sympathovagal balance and homogeneity of myocardial repolarization were evaluated based on the heart rate variability (HRV) and QT interval dispersion (QTd: dynamic changes in QT interval duration). Results:, The increase in QTd was observed only in rats at 1-day withdrawal, but not in nonalcoholic, continuous ethanol intake, and 1-day withdrawal with 7-day carvedilol pretreatment rats. At 1-day withdrawal, the low-frequency power/high-frequency power (LF/HF) ratio in HRV was elevated and correlated with the QTd. The increased QTd and elevated LF/HF ratio were normalized by the 7-day carvedilol pretreatment in rats at 1-day ethanol withdrawal. Conclusions:, In rats with an abrupt termination of the chronic continuous ethanol intake, the homogeneity of myocardial repolarization impaired and correlated with the cardiac sympathovagal balance. Carvedilol pretreatment is associated with a reduction in both the QTd and LF/HF ratio, raising the possibility that the cardiac sympathovagal balance shift may be responsible for the impaired homogeneity of myocardial repolarization, and that ,-blocker pretreatment may decrease the mortality risk during alcoholic withdrawal. [source] Selected Line Difference in the Effects of Ethanol Dependence and Withdrawal on Allopregnanolone Levels and 5,-Reductase Enzyme Activity and ExpressionALCOHOLISM, Issue 12 2009Michelle A. Tanchuck Background:, Allopregnanolone (ALLO) is a progesterone derivative that rapidly potentiates ,-aminobutyric acidA (GABAA) receptor-mediated inhibition and modulates symptoms of ethanol withdrawal. Because clinical and preclinical data indicate that ALLO levels are inversely related to symptoms of withdrawal, the present studies determined whether ethanol dependence and withdrawal differentially altered plasma and cortical ALLO levels in mice selectively bred for differences in ethanol withdrawal severity and determined whether the alterations in ALLO levels corresponded to a concomitant change in activity and expression of the biosynthetic enzyme 5,-reductase. Methods:, Male Withdrawal Seizure-Prone (WSP) and -Resistant (WSR) mice were exposed to 72 hours ethanol vapor or air and euthanized at select times following removal from the inhalation chambers. Blood was collected for analysis of ALLO and corticosterone levels by radioimmunoassay. Dissected amygdala, hippocampus, midbrain, and cortex as well as adrenals were examined for 5,-reductase enzyme activity and expression levels. Results:, Plasma ALLO was decreased significantly only in WSP mice, and this corresponded to a decrease in adrenal 5,-reductase expression. Cortical ALLO was decreased up to 54% in WSP mice and up to 46% in WSR mice, with a similar decrease in cortical 5,-reductase activity during withdrawal in the lines. While cortical gene expression was significantly decreased during withdrawal in WSP mice, there was a 4-fold increase in expression in the WSR line during withdrawal. Hippocampal 5,-reductase activity and gene expression was decreased only in dependent WSP mice. Conclusions:, These results suggest that there are line and brain regional differences in the regulation of the neurosteroid biosynthetic enzyme 5,-reductase during ethanol dependence and withdrawal. In conjunction with the finding that WSP mice exhibit reduced sensitivity to ALLO during withdrawal, the present results are consistent with the hypothesis that genetic differences in ethanol withdrawal severity are due, in part, to modulatory effects of GABAergic neurosteroids such as ALLO. [source] Preclinical Evaluation of Riluzole: Assessments of Ethanol Self-Administration and Ethanol Withdrawal SymptomsALCOHOLISM, Issue 8 2009Joyce Besheer Background:, Many of the neurobehavioral effects of ethanol are mediated by inhibition of excitatory N -methyl- d -aspartate (NMDA) and enhancement of inhibitory ,-amino-butyric-acid (GABA) receptor systems. There is growing interest in drugs that alter these systems as potential medications for problems associated with alcoholism. The drug riluzole, approved for treatment of amyotrophic lateral sclerosis (ALS), inhibits NMDA and enhances GABAA receptor system activity. This study was designed to determine the preclinical efficacy of riluzole to modulate ethanol self-administration and withdrawal. Methods:, Male C57BL/6J mice were trained to lever press on a concurrent fixed-ratio 1 schedule of ethanol (10% v/v) versus water reinforcement during daily 16-hour sessions. Riluzole (1 to 40 mg/kg, IP) was evaluated on ethanol self-administration after acute and chronic (2 week) treatment. To determine if riluzole influences ethanol withdrawal-associated seizures, mice were fed an ethanol-containing or control liquid diet for 18 days. The effects of a single injection of riluzole (30 mg/kg) were examined on handling-induced convulsions after ethanol withdrawal. Results:, Acute riluzole (30 and 40 mg/kg) reduced ethanol self-administration during the first 4 hours of the session, which corresponds to the known pharmacokinetics of this drug. Ethanol self-administration was also reduced by riluzole after chronic treatment. Riluzole (30 mg/kg) significantly decreased the severity of ethanol-induced convulsions 2 hours after ethanol withdrawal. Conclusions:, These results demonstrate that riluzole decreases ethanol self-administration and may reduce ethanol withdrawal severity in mice. Thus, riluzole may have utility in the treatment of problems associated with alcoholism. [source] Sizing up Ethanol-Induced Plasticity: The Role of Small and Large Conductance Calcium-Activated Potassium ChannelsALCOHOLISM, Issue 7 2009Patrick J. Mulholland Small (SK) and large conductance (BK) Ca2+ -activated K+ channels contribute to action potential repolarization, shape dendritic Ca2+spikes and postsynaptic responses, modulate the release of hormones and neurotransmitters, and contribute to hippocampal-dependent synaptic plasticity. Over the last decade, SK and BK channels have emerged as important targets for the development of acute ethanol tolerance and for altering neuronal excitability following chronic ethanol consumption. In this mini-review, we discuss new evidence implicating SK and BK channels in ethanol tolerance and ethanol-associated homeostatic plasticity. Findings from recent reports demonstrate that chronic ethanol produces a reduction in the function of SK channels in VTA dopaminergic and CA1 pyramidal neurons. It is hypothesized that the reduction in SK channel function increases the propensity for burst firing in VTA neurons and increases the likelihood for aberrant hyperexcitability during ethanol withdrawal in hippocampus. There is also increasing evidence supporting the idea that ethanol sensitivity of native BK channel results from differences in BK subunit composition, the proteolipid microenvironment, and molecular determinants of the channel-forming subunit itself. Moreover, these molecular entities play a substantial role in controlling the temporal component of ethanol-associated neuroadaptations in BK channels. Taken together, these studies suggest that SK and BK channels contribute to ethanol tolerance and adaptive plasticity. [source] Sensitization, Duration, and Pharmacological Blockade of Anxiety-Like Behavior Following Repeated Ethanol Withdrawal in Adolescent and Adult RatsALCOHOLISM, Issue 3 2009Tiffany A. Wills Background:, Repeated ethanol withdrawal sensitizes anxiety-like behavior in adult rats and causes anxiety-like behavior and decreased seizure thresholds in adolescent rats. Current experiments determined if adolescent rats exhibit sensitized anxiety-like behavior, the duration of this effect, if drug pretreatments blocked these effects, and if these effects differed from those seen in adults. Methods:, Male adolescent rats received three 5-day cycles of 2.5% ethanol diet (ED) separated by two 2-day withdrawal periods, continuous 15 days of 2.5%ED, or a single 5-day cycle of 2.5%ED. Male adult rats received three 5-day cycles of either 2.5% or 3.5%ED. These groups were tested 5 hours into the final withdrawal for social interaction (SI) deficits (an index of anxiety-like behavior). Ethanol intake was monitored throughout and blood concentrations were obtained from separate groups of rats. Additionally, adolescent rats were tested for SI 1, 2, 7, 14, and 18 days and adults 1 and 2 days after the final withdrawal. Some adolescent rats were also pretreated with the CRF1 antagonist CP-154,526, the 5-HT1A agonist buspirone, or the benzodiazepine receptor antagonist flumazenil during the first 2 withdrawals. Results:, SI was reduced in adolescent rats following repeated withdrawals of 2.5%ED while neither a continuous or single cycle ED exposure caused this effect. Adult rats also had reduced SI following repeated withdrawals from both 2.5% and 3.5%ED. This effect was present up to 1 week following the final withdrawal in adolescents but returned to baseline by 1 day in adults. CP-154,526, buspirone, or flumazenil prevented this reduction in SI in adolescent rats. Conclusions:, Adolescent rats exhibit sensitized anxiety-like behavior following repeated withdrawals at ED concentrations similar to those used in adults. However, this effect is longer lasting in adolescent rats. Drugs modulating CRF, 5-HT, or GABA systems during initial withdrawals prevent the development of anxiety-like behavior otherwise manifest during a final withdrawal in adolescent rats. [source] Remission and Resurgence of Anxiety-Like Behavior Across Protracted Withdrawal Stages in Ethanol-Dependent RatsALCOHOLISM, Issue 9 2007Yu Zhao Background:, Alcohol dependence is a chronic disorder in which withdrawal symptoms often persist after detoxification. The purpose of the present experiment was to characterize susceptibility to stress and anxiogenic stimuli in rats over an extended time period following ethanol withdrawal. Methods:, Male Wistar rats were made dependent via ethanol vapor exposure. The rats were then tested in the elevated plus-maze during acute ethanol withdrawal (ACW, ,8 hour), early "protracted" withdrawal (EPW, 2 weeks), or late "protracted" withdrawal (LPW, 6, 12 weeks) following brief restraint or no stress. Principal components analysis was used to identify constructs underlying plus-maze behavior. Results:, Three factors characterized plus-maze performance: anxiety, locomotor activity, and risk assessment/decision making. Spontaneous anxiety-like behavior was increased during ACW, decreased to levels of ethanol-naïve controls during EPW, but markedly resurged during LPW. Withdrawal did not alter sensitivity to the anxiety-like effects of restraint stress. All ethanol-dependent rats showed locomotor hypoactivity that, in contrast to anxiety, remained stable throughout all withdrawal stages. Neither ethanol withdrawal nor restraint stress altered mean "risk assessment/decision making" scores, though ethanol withdrawal altered the emission of "risk assessment/decision making" behavior in relation to anxiety-like behavior and behavioral activation state. Conclusions:, The findings illustrate and model the spontaneous, severe, and long-lasting nature of behavioral abnormalities that accompany withdrawal from chronic, intermittent ethanol intoxication. The dynamic remission and resurgence in symptoms of negative affect (i.e., behavioral signs of anxiety) during "protracted" withdrawal may complicate recovery from alcoholism. [source] Role of Parvalbumin in Estrogen Protection From Ethanol Withdrawal SyndromeALCOHOLISM, Issue 10 2005Mridula Rewal Abstract: Background: Parvalbumin (PA) is a calcium-binding protein that has been implicated in protecting neurons from hyperexcitability by sequestering intracellular calcium. This study examined whether ethanol exposure and/or ethanol withdrawal (EW) alter the levels of PA in a manner that is protected by 17,-estradiol (E2). Methods: Ovariectomized rats implanted with E2 (EW/E2) or oil pellets (EW/Oil) received chronic ethanol (7.5% w/v, 5 weeks) or control dextrin (Dex/Oil and Dex/E2) diets. At 0 hr, 24 hr, and 2 weeks of EW, three brain areas (the cerebellum, hippocampus, and cortex) were prepared for immunoblotting and immunohistological assessment of PA. Results: At 24 hr of EW, the EW/Oil group showed reduced levels of PA protein and PA-positive neurons in the cerebellum and hippocampus compared with the dextrin control and the EW/E2 groups. At 2 weeks of EW, the reduced levels of PA persisted in the cerebellum but recovered toward the control levels in the hippocampus. The cortex showed no change in PA levels in any of the treatment groups. When tested at 24 hr of EW, the magnitude of EW signs inversely correlated with the levels of PA in the cerebellum and hippocampus. Ethanol exposure itself did not affect PA levels. Conclusion: These data suggest that EW, rather than ethanol exposure, reduces PA levels in a manner that is brain region specific and that is protected by estrogen. Disturbed PA homeostasis is hypothesized to play a role in the hyperexcitability of EW signs. [source] Differential Adaptations in GABAergic and Glutamatergic Systems During Ethanol Withdrawal in Male and Female RatsALCOHOLISM, Issue 6 2005P E. Alele Background: There are significant and consistent sex differences in recovery from ethanol withdrawal in our animal model of ethanol dependence. We have also observed significant and varied sex differences in subunit protein levels of ,-aminobutyric acid A (GABAA) and the N-metheyl-D-aspartate subtype of glutamate receptors occurring with ethanol dependence and withdrawal. Considering the major role of these two systems as targets of ethanol, we wanted to explore additional possible mechanisms underlying changes in GABAergic and glutamatergic responses after chronic ethanol exposure. Therefore, the objective of the present study was to examine GABAergic- and glutamatergic-associated proteins at three days of ethanol withdrawal, when female rats appear to have largely recovered but male rats still display robust signs of withdrawal. Methods: Male and female rats were fed 6% ethanol in a nutritionally complete liquid diet for 14 days according to a pair-fed design; withdrawal was initiated by replacement of the diet with chow. At three days of withdrawal, the cerebral cortex and hippocampus were dissected for use in Western blot analysis. The paired design was maintained throughout all experimental procedures. Results: At three days of ethanol withdrawal, we found region-specific and sex-selective alterations in levels of GAD (glutamic acid decarboxylase, GABA synthetic enzyme), GABA and glutamate transporters, and the synapse-associated proteins HSP70, PSD-95, and synaptophysin. There were also several significant differences in transporter function at this time that varied between males and females. Conclusions: Taken together, these findings show differential adaptations of GABAergic and glutamatergic neurotransmission between female and male rats that are associated with withdrawal recovery. This suggests that selective withdrawal-induced neuroadaptations in regulation of these systems' activities underlie, at least in part, sex differences in withdrawal recovery between male and female rats. [source] Effects of Alcohol Withdrawal on 24 Hour Ambulatory Blood Pressure Among Alcohol-Dependent PatientsALCOHOLISM, Issue 12 2003Ramón Estruch Background: Although epidemiologic studies have reported an association between alcohol intake and high blood pressure (BP), the results of intervention studies have shown inconsistent results. We embarked on a study to determine whether different subgroups of alcohol-dependent patients may be identified in relation to the effect of alcohol on BP. Methods: Fifty alcohol-dependent men (mean age, 41.4 years) received 0.4 g of ethanol per kilogram of body weight every 4 hr in 200 ml of orange juice during 24 hr and the same amount of orange juice without ethanol during another 24 hr. Twenty-four hour ambulatory BP monitoring was performed during ethanol and orange juice intakes, as was hormonal and biochemical analysis. Results: Thirty-five (75%) alcohol-dependent men were normotensive and 15 (30%) hypertensive. Eighteen (51%) normotensive and 12 (80%) hypertensive subjects showed a significant decrease in 24 hr mean BP after ethanol withdrawal (mean decrease of 8.4 mm Hg [95% confidence interval, ,11.2 to ,5.7] and 12.5 mm Hg [confidence interval, ,16.2 to ,8.8], respectively) and were considered as sensitive to alcohol. The remaining alcohol-dependent subjects were considered as resistant to alcohol. Normotensive subjects sensitive to ethanol showed a significantly greater left ventricular mass and a significantly lower ejection fraction than those normotensive patients whose BP did not change after ethanol withdrawal (both p < 0.01). Conclusions: More than three fourths of the hypertensive and more than half of the normotensive alcohol-dependent patients showed sensitivity to the pressor effects of ethanol. Impairment also was observed in heart function in normotensive patients sensitive to the pressor effects of ethanol. [source] Polyamines Contribute to Ethanol Withdrawal-Induced Neurotoxicity in Rat Hippocampal Slice Cultures Through Interactions With the NMDA ReceptorALCOHOLISM, Issue 7 2003D. Alex Gibson Background: Several reports demonstrate that withdrawal from long-term ethanol exposure is associated with significant central nervous system neurotoxicity, produced at least in part by increased activity of N -methyl-d-aspartate receptors (NMDARs). Recent evidence suggests that elevations in the synthesis and release of the polyamines spermidine and spermine, which are known modulators of NMDARs, contribute to the increased activity of the receptor during ethanol withdrawal. Therefore, the goal of this investigation was to examine what role, if any, spermidine and spermine have in the generation of ethanol withdrawal-induced neurotoxicity. Methods: Neurotoxicity (measured as fluorescence of the cell death indicator propidium iodide, PI), glutamate release (measured by high-performance liquid chromatography analysis), and polyamine concentrations (by high-performance liquid chromatography) were measured in rat hippocampal slice cultures undergoing withdrawal from chronic (10 day) ethanol exposure (100 mM). In addition, the effects of the polyamine synthesis inhibitor di-fluoro-methyl-ornithine (DFMO, 0.1,100 nM) and NMDAR polyamine-site antagonists ifenprodil, arcaine, and agmatine (1 nM-100 ,M) on ethanol withdrawal- and NMDA-induced neurotoxicity were measured. Results: Ethanol withdrawal significantly increased glutamate release (peaking at 18 hr with a 53% increase), increased concentrations of putrescine and spermidine (136% and 139% increases, respectively, at 18 hr), and produced significant cytotoxicity in the CA1 hippocampal region (56% increase in PI staining relative to controls) of the cultures. The cell death produced by ethanol withdrawal was significantly inhibited by ifenprodil (IC50= 14.9 nM), arcaine (IC50= 37.9 nM), agmatine (IC50= 41.5 nM), and DFMO (IC50= 0.6 nM). NMDA (5 ,M) significantly increased PI staining in the CA1 region of the hippocampal cultures (365% relative to controls), but ifenprodil, arcaine, agmatine, and DFMO all failed to significantly affect this type of toxicity. Conclusions: These data implicate a role for polyamines in ethanol withdrawal-induced neurotoxicity and suggest that inhibiting the actions of polyamines on NMDARs may be neuroprotective under these conditions. [source] Effects of Acamprosate on Excitatory Amino Acids During Multiple Ethanol Withdrawal PeriodsALCOHOLISM, Issue 3 2003Abdelkader Dahchour Background: Our previous studies on the effects of acamprosate on enhanced locomotion during repeated withdrawals are now extended to the effects of acamprosate on excitatory amino acids in the hippocampus during repeated ethanol withdrawals. Methods: In this study, Wistar rats were made ethanol dependent by 4 weeks of vapor inhalation. After this first cycle of chronic ethanol treatment, rats underwent repeated and alternate cycles of 24 hr withdrawals and 1 week of chronic ethanol treatment. The microdialysis technique was used together with high-performance liquid chromatography and electrochemical detection to quantify different amino acids such as aspartate and glutamate. Results: An intraperitoneal administration of acamprosate (400 mg/kg) to naïve rats did not alter aspartate or glutamate levels compared with the saline groups. During the first cycle of ethanol withdrawal, the administration of acamprosate (400 mg/kg, intraperitoneally) 2 hr after the commencement of ethanol withdrawal decreased both aspartate and glutamate microdialysate levels when compared with their respective saline group. Acamprosate administration also significantly decreased glutamate levels during the third withdrawal compared with the saline group, whereas no changes were seen in aspartate levels. Conclusion: The results of this work demonstrate that acamprosate reduced the excitatory amino acid glutamate increase observed during repeated ethanol withdrawal. These effects of acamprosate may provide a protective mechanism against neurotoxicity by reducing excitatory amino acids, particularly glutamate. [source] Plasma profile and pharmacokinetics of dextromethorphan after intravenous and oral administration in healthy dogsJOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2004B. KuKanich Dextromethorphan is an N -methyl- d -aspartate (NMDA) noncompetitive antagonist which has been used as an antitussive, analgesic adjunct, probe drug, experimentally to attenuate acute opiate and ethanol withdrawal, and as an anticonvulsant. A metabolite of dextromethorphan, dextrorphan, has been shown to behave pharmacodynamically in a similar manner to dextromethorphan. The pharmacokinetics of dextromethorphan were examined in six healthy dogs following intravenous (2.2 mg/kg) and oral (5 mg/kg) administration in a randomized crossover design. Dextromethorphan behaved in a similar manner to other NMDA antagonists upon injection causing muscle rigidity, ataxia to recumbency, sedation, urination, and ptyalism which resolved within 90 min. One dog repeatedly vomited upon oral administration and was excluded from oral analysis. Mean ± SD values for half-life, apparent volume of distribution, and clearance after i.v. administration were 2.0 ±0.6 h, 5.1 ± 2.6 L/kg, and 33.8 ± 16.5 mL/min/kg. Oral bioavailability was 11% as calculated from naïve pooled data. Free dextrorphan was not detected in any plasma sample, however enzymatic treatment of plasma with glucuronidase released both dextromethorphan and dextrorphan indicating that conjugation is a metabolic route. The short half-life, rapid clearance, and poor bioavailability of dextromethorphan limit its potential use as a chronic orally administered therapeutic. [source] Trends in Clinical Toxicology: Advances That May Change Your PracticeBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2005Sage W. Wiener We review selected articles that have advanced our thinking about consequential issues such as gastrointestinal decontamination, paracetamol poisoning, ethanol withdrawal, cocaine-associated chest pain, carbon monoxide poisoning and over-anticoagulation. [source] Protein kinase C, mediates ethanol withdrawal hyper-responsiveness of NMDA receptor currents in spinal cord motor neuronsBRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2005Hui-Fang Li 1The present studies were designed to test the hypothesis that neuronal-specific protein kinase C, (PKC,) plays a critical role in acute ethanol withdrawal hyper-responsiveness in spinal cord. 2Patch-clamp studies were carried out in motor neurons in neonatal rat spinal cord slices. Postsynaptic currents were evoked by brief pulses of 2 mMN -methyl- D -aspartic acid (NMDA) in the presence of bicuculline methiodide 10 ,M; strychnine 5 ,M and tetrodotoxin 0.5 ,M. 3Both ethanol depression and withdrawal hyper-responsiveness of NMDA-evoked currents are dependent on increases in intracellular Ca2+. Blocking intracellular increase in Ca2+ by 30 mM 1,2-bis(2-aminophenoxy)-ethane- N,N,N,,N,-tetraacetic acid (BAPTA) not only decreased the ethanol-induced depression of NMDA-evoked currents (33±5% in control vs 20±3% in BAPTA, P<0.05) but also eliminated acute ethanol withdrawal hyper-responsiveness. 4Immunohistochemistry studies revealed that neonatal spinal cord motor neurons contain an abundance of nuclear PKC,. 5Exposure to ethanol (100 mM) induced PKC, translocation from the nucleus to cytoplasm in motor neurons. Pretreatment with the , -isozyme-specific peptide PKC inhibitor, ,V5-3, blocked ethanol-induced translocation and also blocked withdrawal hyper-responsiveness. 6The results show that PKC, mediates ethanol withdrawal hyper-responsiveness in spinal motor neurons; the results may be relevant to some symptoms of ethanol withdrawal in vivo. British Journal of Pharmacology (2005) 144, 301,307. doi:10.1038/sj.bjp.0706033 [source] Interactions of Stress and CRF in Ethanol-Withdrawal Induced Anxiety in Adolescent and Adult RatsALCOHOLISM, Issue 9 2010Tiffany A. Wills Background:, Repeated stress or administration of corticotropin-releasing factor (CRF) prior to ethanol exposure sensitizes anxiety-like behavior in adult rats. Current experiments determined whether adolescent rats were more sensitive to these challenges in sensitizing ethanol withdrawal-induced anxiety and altering CRF levels in brain during withdrawal. Methods:, Male adult and adolescent Sprague,Dawley rats were restraint stressed (1 hour) twice 1 week apart prior to a single 5-day cycle of ethanol diet (ED; stress/withdrawal paradigm). Other rats received control diet (CD) and three 1-hour restraint stress sessions. Rats were then tested 5, 24, or 48 hours after the final withdrawal for anxiety-like behavior in the social interaction (SI) test. In other experiments, adolescent rats were given two microinjections of CRF icv 1 week apart followed by 5 days of either CD or ED and tested in social interaction 5 hours into withdrawal. Finally, CRF immunoreactivity was measured in the central nucleus of the amygdala (CeA) and paraventricular nucleus (PVN) after rats experienced control diet, repeated ethanol withdrawals, or stress/withdrawal. Results:, Rats of both ages had reduced SI following the stress/withdrawal paradigm, and this effect recovered within 24 hours. Higher CRF doses were required to reduce SI in adolescents than previously reported in adults. CRF immunohistochemical levels were higher in the PVN and CeA of CD-exposed adolescents. In adolescent rats, repeated ethanol withdrawals decreased CRF in the CeA but was not associated with decreased CRF cell number. There was no change in CRF from adult treatments. Conclusions:, In the production of anxiety-like behavior, adolescent rats have equal sensitivity with stress and lower sensitivity with CRF compared to adults. Further, adolescents had higher basal levels of CRF within the PVN and CeA and reduced CRF levels following repeated ethanol withdrawals. This reduced CRF within the CeA could indicate increased release of CRF, and future work will determine how this change relates to behavior. [source] Effects of Acamprosate on Excitatory Amino Acids During Multiple Ethanol Withdrawal PeriodsALCOHOLISM, Issue 3 2003Abdelkader Dahchour Background: Our previous studies on the effects of acamprosate on enhanced locomotion during repeated withdrawals are now extended to the effects of acamprosate on excitatory amino acids in the hippocampus during repeated ethanol withdrawals. Methods: In this study, Wistar rats were made ethanol dependent by 4 weeks of vapor inhalation. After this first cycle of chronic ethanol treatment, rats underwent repeated and alternate cycles of 24 hr withdrawals and 1 week of chronic ethanol treatment. The microdialysis technique was used together with high-performance liquid chromatography and electrochemical detection to quantify different amino acids such as aspartate and glutamate. Results: An intraperitoneal administration of acamprosate (400 mg/kg) to naïve rats did not alter aspartate or glutamate levels compared with the saline groups. During the first cycle of ethanol withdrawal, the administration of acamprosate (400 mg/kg, intraperitoneally) 2 hr after the commencement of ethanol withdrawal decreased both aspartate and glutamate microdialysate levels when compared with their respective saline group. Acamprosate administration also significantly decreased glutamate levels during the third withdrawal compared with the saline group, whereas no changes were seen in aspartate levels. Conclusion: The results of this work demonstrate that acamprosate reduced the excitatory amino acid glutamate increase observed during repeated ethanol withdrawal. These effects of acamprosate may provide a protective mechanism against neurotoxicity by reducing excitatory amino acids, particularly glutamate. [source] |