AGN

Distribution by Scientific Domains

Kinds of AGN

  • radio-loud agn

  • Terms modified by AGN

  • agn activity

  • Selected Abstracts


    The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae)

    INSECT MOLECULAR BIOLOGY, Issue 2 2006
    I. Kim
    Abstract We determined the complete nucleotide sequences of the mitochondrial genome (mitogenome) of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae). The entire mitochondrial DNA (mtDNA) molecule was 15 314 bp long. The C. raphaelis genes were in the same order and orientation as the completely sequenced mitogenomes of other lepidopteran species, except for the presence of an extra copy of tRNASer(AGN). High similarity in primary sequence and secondary structure between the two tandemly located copies of the tRNASer(AGN) suggest a recent duplication of an original single tRNASer(AGN). The DHU arm of the two copies of tRNASer(AGN) formed a simple loop as seen in many other metazoan mt tRNASer(AGN). The putative initiation codon for the C. raphaelis COI gene appears to be a tetranucleotide, TTAG, found commonly in the sequenced lepidopterans. ATPase8, ATPase6, ND4L and ND6 genes, which are next to another protein-coding gene at their 3, end all had the sequences potential to form a hairpin structure, suggesting the importance of such a structure for precise cleavage of the mature protein-coding genes. [source]


    Feedback under the microscope , I. Thermodynamic structure and AGN-driven shocks in M87

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
    E. T. Million
    ABSTRACT We present the first in a series of papers discussing the thermodynamic properties of M87 and the central regions of the Virgo Cluster in unprecedented detail. Using a deep Chandra exposure (574 ks), we present high-resolution thermodynamic maps created from the spectra of ,16 000 independent regions, each with ,1000 net counts. The excellent spatial resolution of the thermodynamic maps reveals the dramatic and complex temperature, pressure, entropy and metallicity structure of the system. The ,X-ray arms', driven outwards from M87 by the central active galactic nuclei (AGN), are prominent in the brightness, temperature and entropy maps. Excluding the ,X-ray arms', the diffuse cluster gas at a given radius is strikingly isothermal. This suggests either that the ambient cluster gas, beyond the arms, remains relatively undisturbed by AGN uplift or that conduction in the intracluster medium (ICM) is efficient along azimuthal directions, as expected under action of the heat-flux-driven buoyancy instability (HBI). We confirm the presence of a thick (,40 arcsec or ,3 kpc) ring of high-pressure gas at a radius of ,180 arcsec (,14 kpc) from the central AGN. We verify that this feature is associated with a classical shock front, with an average Mach number M= 1.25. Another, younger shock-like feature is observed at a radius of ,40 arcsec (,3 kpc) surrounding the central AGN, with an estimated Mach number M, 1.2. As shown previously, if repeated shocks occur every ,10 Myr, as suggested by these observations, then AGN-driven weak shocks could produce enough energy to offset radiative cooling of the ICM. A high significance enhancement of Fe abundance is observed at radii 350,400 arcsec (27,31 kpc). This ridge is likely formed in the wake of the rising bubbles filled with radio-emitting plasma that drag cool, metal-rich gas out of the central galaxy. We estimate that at least ,1.0 106 solar masses of Fe has been lifted and deposited at a radius of 350,400 arcsec; approximately the same mass of Fe is measured in the X-ray bright arms, suggesting that a single generation of buoyant radio bubbles may be responsible for the observed Fe excess at 350,400 arcsec. [source]


    Feedback under the microscope , II.

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
    Heating, gas uplift, mixing in the nearest cluster core
    ABSTRACT Using a combination of deep (574 ks) Chandra data, XMM,Newton high-resolution spectra and optical H,+[N ii] images, we study the nature and spatial distribution of the multi-phase plasma in M87. Our results provide direct observational evidence of ,radio-mode' active galactic nuclei (AGN) feedback in action, stripping the central galaxy of its lowest entropy gas and therefore preventing star formation. This low entropy gas was entrained with and uplifted by the buoyantly rising relativistic plasma, forming long ,arms'. A number of arguments suggest that these arms are oriented within 15,30 of our line-of-sight. The mass of the uplifted gas in the arms is comparable to the gas mass in the approximately spherically symmetric 3.8 kpc core, demonstrating that the AGN has a profound effect on its immediate surroundings. The coolest X-ray emitting gas in M87 has a temperature of ,0.5 keV and is spatially coincident with H,+[N ii] nebulae, forming a multi-phase medium where the cooler gas phases are arranged in magnetized filaments. We place strong upper limits of 0.06 M, yr,1 (at 95 per cent confidence) on the amount of plasma cooling radiatively from 0.5 to 0.25 keV and show that a uniform, volume-averaged heating mechanism could not be preventing the cool gas from further cooling. All of the bright H, filaments in M87 appear in the downstream region of the <3 Myr old shock front, at smaller radii than ,0.6 arcmin. We suggest that shocks induce shearing around the filaments, thereby promoting mixing of the cold gas with the ambient hot intra-cluster medium (ICM) via instabilities. By bringing hot thermal particles into contact with the cool, line-emitting gas, mixing can supply the power and ionizing particles needed to explain the observed optical spectra. Furthermore, mixing of the coolest X-ray emitting plasma with the cold optical line-emitting filamentary gas promotes efficient conduction between the two phases, allowing non-radiative cooling which could explain the lack of X-ray gas with temperatures under 0.5 keV. [source]


    The extraordinary radio galaxy MRC B1221,423: probing deeper at radio and optical wavelengths

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2010
    Helen M. Johnston
    ABSTRACT We present optical spectra and high-resolution multiwavelength radio observations of the compact steep-spectrum radio source MRC B1221,423 (z= 0.1706). MRC B1221,423 is a very young (,105 yr), powerful radio source which is undergoing a tidal interaction with a companion galaxy. We find strong evidence of interaction between the active galactic nucleus (AGN) and its environment. The radio morphology is highly distorted, showing a dramatic interaction between the radio jet and the host galaxy, with the jet being turned almost back on itself. H i observations show strong absorption against the nucleus at an infall velocity of ,250 km s,1 compared to the stellar velocity, as well as a second, broader component which may represent gas falling into the nucleus. Optical spectra show that star formation is taking place across the whole system. Broad optical emission lines in the nucleus show evidence of outflow. Our observations confirm that MRC B1221,423 is a young radio source in a gas-rich nuclear environment, and that there was a time delay of a few times 100 Myr between the onset of star formation and the triggering of the AGN. [source]


    Swimming against the current: simulations of central AGN evolution in dynamic galaxy clusters

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2010
    Brian J. Morsony
    ABSTRACT We present a series of three-dimensional hydrodynamical simulations of central active galactic nuclei (AGN)-driven jets in a dynamic, cosmologically evolved galaxy cluster. Extending previous work, we study jet powers ranging from Ljet= 1044 erg s,1 to Ljet= 1046 erg s,1 and in duration from 30 to 200 Myr. We find that large-scale motions of cluster gas disrupt the AGN jets, causing energy to be distributed throughout the centre of the cluster, rather than confined to a narrow angle around the jet axis. Disruption of the jet also leads to the appearance of multiple disconnected X-ray bubbles from a long-duration AGN with a constant luminosity. This implies that observations of multiple bubbles in a cluster are not necessarily an expression of the AGN duty cycle. We find that the ,sphere of influence' of the AGN, the radial scale within which the cluster is strongly affected by the jet, scales as R,L1/3jet. Increasing the duration of AGN activity does not increase the radius affected by the AGN significantly, but does change the magnitude of the AGN's effects. How an AGN delivers energy to a cluster will determine where that energy is deposited: a high luminosity is needed to heat material outside the core of the cluster, while a low-luminosity, long-duration AGN is more efficient at heating the inner few tens of kpc. [source]


    Enhanced star formation in narrow-line Seyfert 1 active galactic nuclei revealed by Spitzer

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2010
    E. Sani
    ABSTRACT We present new low-resolution Spitzer mid-infrared spectroscopy of a sample of 20 ROSAT -selected local narrow-line Seyfert 1 galaxies (NLS1s). We detect strong active galactic nucleus (AGN) continuum in all and clear polycyclic aromatic hydrocarbon (PAH) emission in 70 per cent of the sources. The 6.2 ,m PAH luminosity spans three orders of magnitude, from ,1039 to ,1042 erg s,1, providing strong evidence for intense ongoing star formation in the circumnuclear regions of these sources. Using the Infrared Spectrograph/Spitzer archive, we gathered a large number of additional NLS1s and their broad-line counterparts (BLS1s) and constructed NLS1 and BLS1 subsamples to compare them in various ways. The comparison shows a clear separation according to full width at half-maximum (H,) [FWHM(H,)] such that objects with narrower broad H, lines are the strongest PAH emitters. We test this division in various ways trying to remove biases due to luminosity and aperture size. Specifically, we find that star formation activity around NLS1 AGN is larger than around BLS1 of the same AGN luminosity. The above result seems to hold over the entire range of distance and luminosity. Moreover, the star formation rate is higher in low black hole mass and high L/LEdd systems indicating that black hole growth and star formation are occurring simultaneously. [source]


    The ionization of the emission-line gas in young radio galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009
    J. Holt
    ABSTRACT This paper is the second in a series in which we present intermediate-resolution, wide-wavelength coverage spectra for a complete sample of 14 compact radio sources, taken with the aim of investigating the impact of the nuclear activity on the circumnuclear interstellar medium (ISM) in the early stages of radio source evolution. In the first paper (Holt, Tadhunter & Morganti), we presented the kinematic results from the nuclear emission-line modelling and reported fast outflows in the circumnuclear gas. In this paper, we use the line fluxes to investigate the physical conditions and dominant ionization mechanisms of the emission-line gas. We find evidence for large electron densities and high reddening in the nuclear regions, particularly in the broader, blueshifted components. These results are consistent with the idea that the young, recently triggered radio sources still reside in dense and dusty cocoons deposited by the recent activity triggering event (merger/interaction). In addition, we find that the quiescent nuclear and extended narrow components are consistent with active galactic nucleus (AGN) photoionization, split between simple-slab AGN photoionization and mixed-medium photoionization models. For the nuclear broader and shifted components, the results are less clear. Whilst there are suggestions that the broader components may be closer to shock plus precursor models on the diagnostic diagrams, and that the electron temperatures and densities are high, we are unable to unambiguously distinguish the dominant ionization mechanism using the optical emission-line ratios. This is surprising given the strong evidence for jet,cloud interactions (broad emission lines, large outflow velocities and strong radio-optical alignments), which favours the idea that the warm gas has been accelerated in shocks driven by the radio lobes expanding through a dense cocoon of gas deposited during the triggering event. [source]


    A QSO host galaxy and its Ly, emission at z= 6.43,

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009
    Tomotsugu Goto
    ABSTRACT Host galaxies of highest redshift quasi-stellar objects (QSOs) are of interest; they provide us with a valuable opportunity to investigate physics relevant to the starburst,active galactic nuclei (AGN) connection at the earliest epoch of the Universe, with the most luminous black holes. Here, we report an optical detection of an extended structure around a QSO at z= 6.43 in deep z,- and zr -band images of the Subaru/Suprime-Cam. Our target is CFHQS J2329-0301 (z= 6.43), the highest redshift QSO currently known. We have carefully subtracted a point spread function (PSF) constructed using nearby stars from the images. After the PSF (QSO) subtraction, a structure in the z, band extends more than 4 arcsec on the sky (Re= 11 kpc), and, thus, is well resolved (16, detection). The PSF-subtracted zr -band structure is in a similar shape to that in the z, band, but less significant with a 3, detection. In the z, band, a radial profile of the QSO+host shows a clear excess over that of the averaged PSF in 0.8,3 arcsec radius. Since the z, band includes a Ly, emission at z= 6.43, we suggest the z, flux is a mixture of the host (continuum light) and its Ly, emission, whereas the zr -band flux is from the host. Through a SED modelling, we estimate 40 per cent of the PSF-subtracted z,-band light is from the host (continuum) and 60 per cent is from Ly, emission. The absolute magnitude of the host is M1450=,23.9 (cf. M1450=,26.4 for the QSO). A lower limit of the SFR(Ly,) is 1.6 M, yr,1 with stellar mass ranging from 6.2 108 to 1.1 1010 M, when 100 Myr of age is assumed. The detection shows that a luminous QSO is already harboured by a large, star-forming galaxy in the early Universe only after ,840 Myr after the big bang. The host may be a forming giant galaxy, co-evolving with a super-massive black hole. [source]


    The disc-dominated host galaxy of FR-I radio source B2 0722+30

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
    B. H. C. Emonts
    ABSTRACT We present new observational results that conclude that the nearby radio galaxy B2 0722+30 is one of the very few known disc galaxies in the low-redshift Universe that host a classical double-lobed radio source. In this paper, we use H i observations, deep optical imaging, stellar population synthesis modelling and emission-line diagnostics to study the host galaxy, classify the active galactic nucleus (AGN) and investigate environmental properties under which a radio-loud AGN can occur in this system. Typical for spiral galaxies, B2 0722+30 has a regularly rotating gaseous disc throughout which star formation occurs. Dust heating by the ongoing star formation is likely responsible for the high infrared luminosity of the system. The optical emission-line properties of the central region identify a Low Ionization Nuclear Emission-line Region (LINER)-type nucleus with a relatively low [O iii] luminosity, in particular when compared with the total power of the Fanaroff & Riley type-I radio source that is present in this system. This classifies B2 0722+30 as a classical radio galaxy rather than a typical Seyfert galaxy. The environment of B2 0722+30 is extremely H i -rich, with several nearby interacting galaxies. We argue that a gas-rich interaction involving B2 0722+30 is a likely cause for the triggering of the radio AGN and/or the fact that the radio source managed to escape the optical boundaries of the host galaxy. [source]


    Radio constraints on the volume filling factors of AGN winds

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
    A. J. Blustin
    ABSTRACT The calculation of mass outflow rates of active galactic nuclei (AGN) winds is of great importance in understanding the role that such winds play in AGN-galaxy feedback processes. The mass outflow rates are, however, difficult to estimate since the volume filling factors of the winds are unknown. In this paper, we use constraints imposed by the observed radio emission to obtain upper limits to the volume filling factors of wind components in certain nearby AGN. We do this by predicting the 1.4 GHz radio flux densities emitted by those components, assuming a uniform wind, and then comparing these with the observed flux densities for each AGN at this frequency. We find that the upper limits to the volume filling factors are in the range of 10,4,0.5. [source]


    Shock heating in the group atmosphere of the radio galaxy B2 0838+32A

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2008
    Nazirah N. Jetha
    ABSTRACT We present Chandra and radio observations, and analysis of Sloan Digital Sky Survey data, of the radio galaxy B2 0838+32A (4C 32.26) and its environment. The radio galaxy is at the centre of a nearby group that has often been identified with the cluster Abell 695, but we argue that the original Abell cluster is likely to be an unrelated and considerably more distant system. The radio source is a restarting radio galaxy and, using our Chandra data, we argue that the currently active lobes are expanding supersonically, driving a shock with Mach number 2.4+1.0,0.5 into the interstellar medium. This would be only the third strong shock round a young radio source to be discovered, after Centaurus A and NGC 3801. However, in contrast to both these systems, the host galaxy of B2 0838+32A shows no evidence for a recent merger, while the active galactic nuclei (AGN) spectrum shows no evidence for the dusty torus that would imply a large reservoir of cold gas close to the central black hole. On the contrary, the AGN spectrum is of a type that has been associated with the presence of a radiatively inefficient accretion flow that could be controlled by an AGN heating and subsequent cooling of the hot, X-ray emitting gas. If correct, this means that B2 0838+32A is the first source in which we can directly see entropy-increasing processes (shocks) driven by accretion from the hot phase of the interstellar medium. [source]


    Why are AGN found in high-mass galaxies?

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
    Lan Wang
    ABSTRACT There is a strong observed mass dependence of the fraction of nearby galaxies that contain either low-luminosity [low-ionization nuclear emission-line region (LINER) type] or higher luminosity (Seyfert or composite type) active galactic nuclei (AGN). This implies that either only a small fraction of low-mass galaxies contain black holes, or that the black holes in these systems only accrete rarely or at very low rates, and hence are generally not detectable as AGN. In this paper, we use semi-analytic models implemented in the Millennium Simulation to analyse the mass dependence of the merging histories of dark matter haloes and of the galaxies that reside in them. Only a few per cent of galaxies with stellar masses less than M* < 1010 M, are predicted to have experienced a major merger. The fraction of galaxies that have experienced major mergers increases steeply at larger stellar masses. We argue that if a major merger is required to form the initial seed black hole, the mass dependence of AGN activity in local galaxies can be understood quite naturally. We then investigate when the major mergers that first create these black holes are predicted to occur. High-mass galaxies are predicted to have formed their first black holes at very early epochs. The majority of low-mass galaxies never experience a major merger and hence may not contain a black hole, but a significant fraction of the supermassive black holes that do exist in low-mass galaxies are predicted to have formed recently. [source]


    Spitzer IRAC infrared colours of submillimetre-bright galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    Min S. Yun
    ABSTRACT High-redshift submillimetre-bright galaxies identified by blank field surveys at millimetre and submillimetre wavelengths appear in the region of the Infra Red Array Camera (IRAC) colour,colour diagrams previously identified as the domain of luminous active galactic nuclei (AGNs). Our analysis using a set of empirical and theoretical dusty starburst spectral energy distribution (SED) models shows that power-law continuum sources associated with hot dust heated by young (,100 Myr old), extreme starbursts at z > 2 also occupy the same general area as AGNs in the IRAC colour,colour plots. A detailed comparison of the IRAC colours and SEDs demonstrates that the two populations are distinct from each other, with submillimetre-bright galaxies having a systematically flatter IRAC spectrum (,1 mag bluer in the observed [4.5],[8.0] colour). Only about 20 per cent of the objects overlap in the colour,colour plots, and this low fraction suggests that submillimetre galaxies powered by a dust-obscured AGN are not common. The red infrared colours of the submillimetre galaxies are distinct from those of the ubiquitous foreground IRAC sources, and we propose a set of infrared colour selection criteria for identifying SMG counterparts that can be used even in the absence of radio or Multiband Imaging Photometer for Spitzer (MIPS) 24 ,m data. [source]


    Is AGN feedback necessary to form red elliptical galaxies?

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    A. Khalatyan
    ABSTRACT We have used the smoothed particle hydrodynamics (SPH) code gadget-2 to simulate the formation of an elliptical galaxy in a group-size cosmological dark matter halo with mass Mhalo, 3 1012 h,1 M, at z= 0. The use of a stellar population synthesis model has allowed us to compute magnitudes, colours and surface brightness profiles. We have included a model to follow the growth of a central black hole and we have compared the results of simulations with and without feedback from active galactic nuclei (AGN). We have studied the interplay between cold gas accretion and merging in the development of galactic morphologies, the link between colour and morphology evolution, the effect of AGN feedback on the photometry of early-type galaxies, the redshift evolution in the properties of quasar hosts, and the impact of AGN winds on the chemical enrichment of the intergalactic medium (IGM). We have found that the early phases of galaxy formation are driven by the accretion of cold filamentary flows, which form a disc galaxy at the centre of the dark matter halo. Disc star formation rates in this mode of galaxy growth are about as high as the peak star formation rates attained at a later epoch in galaxy mergers. When the dark matter halo is sufficiently massive to support the propagation of a stable shock, the gas in the filaments is heated to the virial temperature, cold accretion is shut down, and the star formation rate begins to decline. Mergers transform the spiral galaxy into an elliptical one, but they also reactivate star formation by bringing gas into the galaxy. Without a mechanism that removes gas from the merger remnants, the galaxy ends up with blue colours, which are atypical for its elliptical morphology. We have demonstrated that AGN feedback can solve this problem even with a fairly low heating efficiency. Our simulations support a picture where AGN feedback is important for quenching star formation in the remnant of wet mergers and for moving them to the red sequence. This picture is consistent with recent observational results, which suggest that AGN hosts are galaxies in migration from the blue cloud to the red sequence on the colour,magnitude diagram. However, we have also seen a transition in the properties of AGN hosts from blue and star forming at z, 2 to mainly red and dead at z, 0. Ongoing merging is the primary but not the only triggering mechanism for luminous AGN activity. Quenching by AGN is only effective after the cold filaments have dried out, since otherwise the galaxy is constantly replenished with gas. AGN feedback also contributes to raising the entropy of the hot IGM by removing low-entropy tails vulnerable to developing cooling flows. We have also demonstrated that AGN winds are potentially important for the metal enrichment of the IGM a high redshift. [source]


    The impact of radio feedback from active galactic nuclei in cosmological simulations: formation of disc galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    Takashi Okamoto
    ABSTRACT In this paper, we present a new implementation of feedback due to active galactic nuclei (AGN) in cosmological simulations of galaxy formation. We assume that a fraction of jet energy, which is generated by an AGN, is transferred to the surrounding gas as thermal energy. Combining a theoretical model of mass accretion on to black holes with a multiphase description of star-forming gas, we self-consistently follow evolution of both galaxies and their central black holes. The novelty in our model is that we consider two distinct accretion modes: standard radiatively efficient thin accretion discs and radiatively inefficient accretion flows which we will generically refer to as RIAFs; motivated by theoretical models for jet production in accretion discs, we assume that only the RIAF is responsible for the AGN feedback. The focus of this paper is to investigate the interplay between galaxies and their central black holes during the formation of a disc galaxy. We find that, after an initial episode of bursting star formation, the accretion rate on to the central black hole drops so that the accretion disc switches to a RIAF structure. At this point, the feedback from the AGN becomes efficient and slightly suppresses star formation in the galactic disc and almost completely halts star formation in the bulge. This suppression of the star formation regulates mass accretion on to the black hole and associated AGN feedback. As a result, the nucleus becomes a stochastically fuelled low-luminosity AGN (Seyfert galaxy) with recurrent short-lived episodes of activity after the star bursts. During the ,on' events, the AGN produces reasonably powerful jets (radio-loud state) and is less luminous than the host galaxy, while in the ,off' phase, the nucleus is inactive and ,radio quiet'. Our model predicts several properties of the low-luminosity AGN including the bolometric luminosity, jet powers, the effect on kpc scale of the radio jet and the AGN lifetime, which are in broad agreement with observations of Seyfert galaxies and their radio activity. We also find that the ratios between the central black hole mass and the mass of the host spheroid at z= 0 are ,10,3 regardless of the strength of either supernova feedback or AGN feedback because the radiation drag model directly relates the star formation activity in the Galactic Centre and the mass accretion rate on to the central black hole. [source]


    Deep spectroscopy of the FUV,optical emission lines from a sample of radio galaxies at z, 2.5: metallicity and ionization,

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    A. Humphrey
    ABSTRACT We present long-slit near-infrared (NIR) spectra, obtained using the Infrared Spectrometer And Array Camera (ISAAC) instrument at the Very Large Telescope, which sample the rest-frame optical emission lines from nine radio galaxies at z, 2.5. One-dimensional spectra have been extracted and, using broad-band photometry, have been cross-calibrated with spectra from the literature to produce line spectra spanning a rest wavelength of ,1200,7000 . The resulting line spectra have a spectral coverage that is unprecedented for radio galaxies at any redshift. We have also produced a composite of the rest-frame ultraviolet (UV),optical line fluxes of powerful, z, 2.5 radio galaxies. We have investigated the relative strengths of Ly,, H,, H,, He ii,1640 and He ii,4687, and we find that Av can vary significantly from object to object. In addition, we have identified new line ratios to calculate electron temperature: [Ne v],1575/[Ne v],3426, [Ne iv],1602/[Ne iv],2423, O iii],1663/[O iii],5008 and [O ii],2471/[O ii],3728. We calculate an average O iii temperature of 14100+1000,600 K. We have modelled the rich emission line spectra, and we conclude that they are best explained by active galactic nucleus (AGN) photoionization with the ionization parameter U varying between objects. For shock models (with or without the precursor) to provide a satisfactory explanation for the data, an additional source of ionizing photons is required , presumably the ionizing radiation field of the AGN. Single slab photoionization models are unable to reproduce the high- and the low-ionization lines simultaneously: the higher ionization lines imply higher U than do the lower ionization lines. This problem may be alleviated either by combining two or more single slab photoionization models with different U, or by using mixed-medium models such as those of Binette, Wilson & Storchi-Bergmann. In either case, U must vary from object to object. On the basis of N v/N iv] and N iv]/C iv we argue that, while photoionization is the dominant ionization mechanism in the extended emission line regions (EELR), shocks make a fractional contribution (,10 per cent) to its ionization. The N v/N iv] and N iv]/C iv ratios in the broad-line region (BLR) of some quasars suggest that shock ionization may be important in the BLR also. We find that in the EELR of z, 2 radio galaxies the N/H abundance ratio is close to its solar value. We conclude that N/H and metallicity do not vary by more than a factor of 2 in our sample. These results are consistent with the idea that the massive ellipticals which become the hosts to powerful AGN are assembled very early in the history of the universe, and then evolve relatively passively up to the present day. [source]


    Are galaxies with active galactic nuclei a transition population?

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
    P. B. Westoby
    ABSTRACT We present the results of an analysis of a well-selected sample of galaxies with active and inactive galactic nuclei from the Sloan Digital Sky Survey, in the range 0.01 < z < 0.16. The SDSS galaxy catalogue was split into two classes of active galaxies, Type 2 active galactic nuclei (AGN) and composites, and one set of inactive, star-forming/passive galaxies. For each active galaxy, two inactive control galaxies were selected by matching redshift, absolute magnitude, inclination, and radius. The sample of inactive galaxies naturally divides into a red and a blue sequence, while the vast majority of AGN hosts occur along the red sequence. In terms of H, equivalent width (EW), the population of composite galaxies peaks in the valley between the two modes, suggesting a transition population. However, this effect is not observed in other properties such as the colour,magnitude space or colour,concentration plane. Active galaxies are seen to be generally bulge-dominated systems, but with enhanced H, emission compared to inactive red-sequence galaxies. AGN and composites also occur in less dense environments than inactive red-sequence galaxies, implying that the fuelling of AGN is more restricted in high-density environments. These results are therefore inconsistent with theories in which AGN host galaxies are a ,transition' population. We also introduce a systematic 3D spectroscopic imaging survey, to quantify and compare the gaseous and stellar kinematics of a well-selected, distance-limited sample of up to 20 nearby Seyfert galaxies, and 20 inactive control galaxies with well-matched optical properties. The survey aims to search for dynamical triggers of nuclear activity and address outstanding controversies in optical/infrared imaging surveys. [source]


    The UV properties of E+A galaxies: constraints on feedback-driven quenching of star formation

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2007
    S. Kaviraj
    ABSTRACT We present the first large-scale study of E+A galaxies that incorporates photometry in the ultraviolet (UV) wavelengths. E+A galaxies are ,post-starburst' systems, with strong Balmer absorption lines indicating significant recent star formation, but without [O ii] and H, emission lines which are characteristic of ongoing star formation. The starburst that creates the E+A galaxy typically takes place within the last Gyr and creates a high fraction (20,60 per cent) of the stellar mass in the remnant over a short time-scale (<0.1 Gyr). We find a tight correlation between the luminosity of our E+A galaxies and the implied star formation rate (SFR) during the starburst. While low-luminosity E+As [M(z) > ,20] exhibit implied SFRs of less than 50 M, yr,1, their luminous counterparts [M(z) < ,22] show SFRs greater than 300 and as high as 2000 M, yr,1, suggesting that luminous and ultra-luminous infrared galaxies in the low-redshift Universe could be the progenitors of massive nearby E+A galaxies. We perform a comprehensive study of the characteristics of the quenching that truncates the starburst in E+A systems. We find that, for galaxies less massive than 1010 M,, the quenching efficiency decreases as the galaxy mass increases. However, for galaxies more massive than 1010 M,, this trend is reversed and the quenching efficiency increases with galaxy mass. Noting that the mass threshold at which this reversal occurs is in excellent agreement with the mass above which active galactic nuclei (AGN) become significantly more abundant in nearby galaxies, we use simple energetic arguments to show that the bimodal behaviour of the quenching efficiency is consistent with AGN and supernovae (SN) being the principal sources of negative feedback above and below M, 1010 M,, respectively. The arguments assume that quenching occurs through the mechanical ejection or dispersal of the gas reservoir and that, in the high-mass regime (M > 1010 M,), the Eddington ratios in this sample of galaxies scale as M,, where 1 < , < 3. Finally, we use our E+A sample to estimate the time it takes for galaxies to migrate from the blue cloud to the red sequence. We find migration times between 1 and 5 Gyr, with a median value of 1.5 Gyr. [source]


    Central kiloparsec of Seyfert and inactive host galaxies: a comparison of two-dimensional stellar and gaseous kinematics

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
    Galle Dumas
    ABSTRACT We investigate the properties of the two-dimensional distribution and kinematics of ionized gas and stars in the central kiloparsec of a matched sample of nearby active (Seyfert) and inactive galaxies, using the SAURON integral field unit on the William Herschel Telescope. The ionized gas distributions show a range of low-excitation regions, such as star formation rings in Seyfert and inactive galaxies, and high-excitation regions related to photoionization by the active galactic nucleus (AGN). The stellar kinematics of all galaxies in the sample show regular rotation patterns typical of disc-like systems, with kinematic axes that are well aligned with those derived from the outer photometry and provide a reliable representation of the galactic line of nodes. After removal of the non-gravitational components due to, for example, AGN-driven outflows, the ionized gas kinematics in both the Seyfert and inactive galaxies are also dominated by rotation with global alignment between stars and gas in most galaxies. This result is consistent with previous findings from photometric studies that the large-scale light distribution of Seyfert hosts is similar to that of inactive hosts. However, by fully exploiting the two-dimensional nature of our spectroscopic data, deviations from axisymmetric rotation in the gaseous velocity fields are identified, which suggest that the gaseous kinematics are more disturbed at small radii in the Seyfert galaxies compared with the inactive galaxies. This provides a tentative link between nuclear gaseous streaming and nuclear activity. [source]


    The XMM-SSC survey of hard-spectrum XMM,Newton sources , I. Optically bright sources

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
    M. J. Page
    ABSTRACT We present optical and X-ray data for a sample of serendipitous XMM,Newton sources that are selected to have 0.5,2 versus 2,4.5 keV X-ray hardness ratios which are harder than the X-ray background. The sources have 2,4.5 keV X-ray flux ,10,14 erg cm,2 s,1, and in this paper we examine a subsample of 42 optically bright (r < 21) sources; this subsample is 100 per cent spectroscopically identified. All but one of the optical counterparts are extragalactic, and we argue that the single exception, a Galactic M star, is probably a coincidental association rather than the correct identification of the X-ray source. The X-ray spectra of all the sources are consistent with heavily absorbed power laws (21.8 < log NH < 23.4), and all of them, including the two sources with 2,10 keV intrinsic luminosities of <1042 erg s,1, appear to be absorbed active galactic nuclei (AGN). The majority of the sources show only narrow emission lines in their optical spectra, implying that they are type 2 AGN. Three sources have 2,10 keV luminosities of >1044 erg s,1, and two of these sources have optical spectra which are dominated by narrow emission lines, that is, are type 2 QSOs. Only a small fraction of the sources (7/42) show broad optical emission lines, and all of these have NH < 1023 cm,2. This implies that ratios of X-ray absorption to optical/ultraviolet extinction equivalent to >100 times the Galactic gas-to-dust ratio are rare in AGN absorbers (at most a few per cent of the population), and may be restricted to broad absorption line QSOs. Seven objects appear to have an additional soft X-ray component in addition to the heavily absorbed power law; all seven are narrow emission-line objects with z < 0.3 and 2,10 keV intrinsic luminosities <1043 erg s,1. We consider the implications of our results in the light of the AGN unified scheme. We find that the soft components in narrow-line objects are consistent with the unified scheme provided that >4 per cent of broad-line AGN (BLAGN) have ionized absorbers that attenuate their soft X-ray flux by >50 per cent. In at least one of the X-ray-absorbed BLAGN in our sample the X-ray spectrum requires an ionized absorber, consistent with this picture. [source]


    Impact of tangled magnetic fields on fossil radio bubbles

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2007
    M. Ruszkowski
    ABSTRACT There is growing consensus that feedback from active galactic nuclei (AGN) is the main mechanism responsible for stopping cooling flows in clusters of galaxies. AGN are known to inflate buoyant bubbles that supply mechanical power to the intracluster gas [intracluster medium (ICM)]. High Reynolds number hydrodynamical simulations show that such bubbles get entirely disrupted within 100 Myr, as they rise in cluster atmospheres, which is contrary to observations. This artificial mixing has consequences for models trying to quantify the amount of heating and star formation in cool core clusters of galaxies. It has been suggested that magnetic fields can stabilize bubbles against disruption. We perform magnetohydrodynamical simulations of fossil bubbles in the presence of tangled magnetic fields using the high-order pencil code. We focus on the physically motivated case where thermal pressure dominates over magnetic pressure and consider randomly oriented fields with and without maximum helicity and a case where large-scale external fields drape the bubble. We find that helicity has some stabilizing effect. However, unless the coherence length of magnetic fields exceeds the bubble size, the bubbles are quickly shredded. As observations of Hydra A suggest that length-scale of magnetic fields may be smaller than typical bubble size, this may suggest that other mechanisms, such as viscosity, may be responsible for stabilizing the bubbles. However, since Faraday rotation observations of radio lobes do not constrain large-scale ICM fields well if they are aligned with the bubble surface, the draping case may be a viable alternative solution to the problem. A generic feature found in our simulations is the formation of magnetic wakes where fields are ordered and amplified. We suggest that this effect could prevent evaporation by thermal conduction of cold H, filaments observed in the Perseus cluster. [source]


    The clustering of narrow-line AGN in the local Universe

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2006
    Cheng Li
    ABSTRACT We have analysed the clustering of ,90 000 narrow-line active galactic nuclei (AGN) drawn from the Data Release 4 (DR4) of the Sloan Digital Sky Survey. Our analysis addresses the following questions. (i) How do the locations of galaxies within the large-scale distribution of dark matter influence ongoing accretion on to their central black holes? (ii) Is AGN activity triggered by interactions or mergers between galaxies? We compute the cross-correlation between AGN and a reference sample of galaxies drawn from the DR4. We compare this to results for control samples of inactive galaxies matched simultaneously in redshift, stellar mass, concentration, velocity dispersion and mean stellar age, as measured by the 4000- break strength. We also compare near-neighbour counts around AGN and around the control galaxies. On scales larger than a few Mpc, AGN have almost the same clustering amplitude as the control sample. This demonstrates that AGN host galaxies and inactive control galaxies populate dark matter haloes of similar mass. On scales between 100 kpc and 1 Mpc, AGN are clustered more weakly than the control galaxies. We use mock catalogues constructed from high-resolution N -body simulations to interpret this antibias, showing that the observed effect is easily understood if AGN are preferentially located at the centres of their dark matter haloes. On scales less than 70 kpc, AGN cluster marginally more strongly than the control sample, but the effect is weak. When compared to the control sample, we find that only one in 100 AGN has an extra neighbour within a radius of 70 kpc. This excess increases as a function of the accretion rate on to the black hole, but it does not rise above the few per cent level. Although interactions between galaxies may be responsible for triggering nuclear activity in a minority of nearby AGN, some other mechanism is required to explain the activity seen in the majority of the objects in our sample. [source]


    Effect of turbulent diffusion on iron abundance profiles

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
    P. Rebusco
    ABSTRACT We compare the observed peaked iron abundance profiles for a small sample of groups and clusters with the predictions of a simple model involving the metal ejection from the brightest galaxy and the subsequent diffusion of metals by stochastic gas motions. Extending the analysis of Rebusco et al., we found that for five out of eight objects in the sample an effective diffusion coefficient of the order of 1029 cm2 s,1 is needed. For AWM4, Centaurus and AWM7 the results are different suggesting substantial intermittence in the process of metal spreading across the cluster. There is no obvious dependence of the diffusion coefficient on the mass of the system. We also estimated the characteristic velocities and the spatial scales of the gas motions needed to balance the cooling losses by the dissipation of the same gas motions. A comparison of the derived spatial scales and the sizes of observed radio bubbles inflated in the ICM by a central active galactic nucleus (AGN) suggests that the AGN/ICM interaction makes an important (if not a dominant) contribution to the gas motions in the cluster cores. [source]


    Emission-line diagnostics of low-metallicity active galactic nuclei

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
    Brent A. Groves
    ABSTRACT Current emission-line-based estimates of the metallicity of active galactic nuclei (AGN) at both high and low redshifts indicate that AGN have predominantly solar-to-supersolar metallicities. This leads to the question: do low-metallicity AGN exist? In this paper, we use photoionization models to examine the effects of metallicity variations on the narrow emission-lines from an AGN. We explore a variety of emission-line diagnostics that are useful for identifying AGN with low-metallicity gas. We find that line ratios involving [N ii] are the most robust metallicity indicators in galaxies where the primary source of ionization is from the active nucleus. Ratios involving [S ii] and [O i] are strongly affected by uncertainties in modelling the density structure of the narrow-line clouds. To test our diagnostics, we turn to an analysis of AGN in the Sloan Digital Sky Survey (SDSS). We find a clear trend in the relative strength of [N ii] with the mass of the AGN-host galaxy. The metallicity of the ISM is known to be correlated with stellar mass in star-forming galaxies; our results indicate that a similar trend exists for AGN. We also find that the best-fitting models for typical Seyfert narrow-line regions (NLRs) have supersolar abundances. Although there is a mass-dependent range of a factor of 2,3 in the NLR metallicities of the AGN in our sample, AGN with subsolar metallicities are very rare in the SDSS. Out of a sample of ,23 000 Seyfert 2 galaxies, we find only ,40 clear candidates for AGN with NLR abundances that are below solar. [source]


    Deep spectroscopy of 9C J1503+4528: a very young compact steep spectrum radio source at z= 0.521

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
    K. J. Inskip
    ABSTRACT 9C J1503+4528 is a very young compact steep spectrum radio galaxy, with an age of the order of 104 yr. This source is therefore an ideal laboratory for the study of the intrinsic host galaxy/intergalactic medium properties, interactions between the radio source and surrounding interstellar medium, links between star formation and active galactic nucleus (AGN) activity and the radio source triggering mechanism. Here we present the results of a spectroscopic analysis of this source, considering each of these aspects of radio source physics. We find that shock ionization by the young radio source is important in the central regions of the galaxy on scales similar to that of the radio source itself, whilst evidence for an AGN ionization cone is observed at greater distances. Line and continuum features require the presence of a young stellar population (YSP), the best-fitting model for which implies an age of 5 106 yr, significantly older than the radio source. Most interestingly, the relative sizes of radio source and extended emission-line region suggest that both AGN and radio source are triggered at approximately the same time. If both the triggering of the radio source activity and the formation of the YSP had the same underlying cause, this source provides a sequence for the events surrounding the triggering process. We propose that the AGN activity in 9C J1503+4528 was caused by a relatively minor interaction, and that a supermassive black hole powering the radio jets must have been in place before the AGN was triggered. [source]


    Post-starburst,active galactic nucleus connection: spatially resolved spectroscopy of H,-strong active galactic nuclei

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
    Tomotsugu Goto
    ABSTRACT Ever since the coexistence of an active galactic nucleus (AGN) and a starburst was observationally discovered, there has been a significant controversy over whether there is a physical connection between starbursts and AGN. If yes, it is a subject of interest to reveal which one triggers another. Here, we bring a unique insight into the subject by identifying 840 galaxies with both a post-starburst signature (strong Balmer absorption lines) and an AGN (based on the emission-line ratio). These post-starburst AGN account for the 4.2 per cent of all the galaxies in a volume-limited sample. The presence of a post-starburst phase with an active AGN itself is of importance, suggesting that AGN may outlive starbursts in the starburst,AGN connection. In addition, we have performed spatially resolved spectroscopy of three of our post-starbusrst AGN galaxies, obtaining some evidence that the post-starburst region is more extended, but sharply centred around the central AGN, confirming a spatial connection between the post-starburst and AGN. [source]


    An explanation for the soft X-ray excess in active galactic nuclei

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
    J. Crummy
    ABSTRACT We present a large sample of type 1 active galactic nuclei (AGN) spectra taken with XMM,Newton, and fit them with both the conventional model (a power law and blackbody) and the relativistically blurred photoionized disc reflection model of Ross & Fabian. We find that the disc reflection model is a better fit. The disc reflection model successfully reproduces the continuum shape, including the soft excess, of all the sources. The model also reproduces many features that would conventionally be interpreted as absorption edges. We are able to use the model to infer the properties of the sources, specifically that the majority of black holes in the sample are strongly rotating, and that there is a deficit in sources with an inclination >70. We conclude that the disc reflection model is an important tool in the study of AGN X-ray spectra. [source]


    Supermassive black hole mass functions at intermediate redshifts from spheroid and AGN luminosity functions

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2006
    Naoyuki Tamura
    ABSTRACT Redshift evolution of supermassive black hole mass functions (BHMFs) is investigated up to z, 1. BHMFs at intermediate redshifts are calculated in two ways. One way is from early-type galaxy luminosity functions (LFs); we assume an MBH,Lsph correlation at a redshift by considering a passive evolution of Lsph in the local relationship. The resultant BHMFs (spheroid-BHMFs) from LFs of red-sequence galaxies indicate a slight decrease of number density with increasing redshift at MBH, 107.5,8 M,. Since a redshift evolution in slope and zeropoint of the MBH,Lsph relation is unlikely to be capable of making such an evolution in BHMF, the evolution of the spheroid-BHMFs is perhaps due mainly to the decreasing normalization in the galaxy LFs. We also derive BHMFs from LFs of morphologically selected early-type galaxies. The resultant BHMFs are similar to those from the red-sequence galaxies, but show a small discrepancy at z, 1 corresponding to an increase of supermassive black hole (SMBH) number density by ,0.3 dex. We also investigate how spheroid-BHMFs are affected by uncertainties existing in the derivation in detail. The other way of deriving a BHMF is based on the continuity equation for number density of SMBHs and LFs of active galactic nucleus (AGN). The resultant BHMFs (AGN-BHMFs) show no clear evolution out to z= 1 at MBH, 108 M,, but exhibit a significant decrease with redshift in the lower mass range. Interestingly, these AGN-BHMFs are quite different in the range of MBH, 108 M, from those derived by Merloni (2004), where the fundamental plane of black hole activity is exploited. Comparison of the spheroid-BHMFs with the AGN-BHMFs suggests that at MBH, 108 M,, the spheroid-BHMFs are broadly consistent with the AGN-BHMFs out to z, 1. Although the decrease of SMBH number density with redshift suggested by the spheroid-BHMFs is slightly faster than that suggested by the AGN-BHMFs, we presume this to be due at least partly to a selection effect on the LFs of red-sequence galaxies; the colour selection could miss spheroids with blue colours. The agreement between the spheroid-BHMFs and the AGN-BHMFs appears to support that most of the SMBHs are already hosted by massive spheroids at z, 1 and they evolve without significant mass growth since then. [source]


    What controls the C iv line profile in active galactic nuclei?

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2005
    Alexei Baskin
    ABSTRACT The high-ionization lines in active galactic nuclei (AGN), such as C iv, tend to be blueshifted with respect to the lower-ionization lines, such as H,, and often show a strong blue excess asymmetry not seen in the low-ionization lines. There is accumulating evidence that the H, profile is dominated by gravity, and thus provides a useful estimate of the black hole mass in AGN. The shift and asymmetry commonly seen in C iv suggest that non-gravitational effects, such as obscuration and radiation pressure, may affect the line profile. We explore the relation between the H, and C iv profiles using the ultraviolet (UV) spectra available for 81 of the 87 z, 0.5 PG quasars in the Boroson & Green sample. We find the following. (1) Narrow C iv lines (full width at half-maximum, FWHM < 2000 km s,1) are rare (,2 per cent occurrence rate) compared with narrow H, lines (,20 per cent). (2) In most objects where the H, FWHM < 4000 km s,1 the C iv line is broader than H,, but the reverse is true when the H, FWHM > 4000 km s,1. This argues against the view that C iv generally originates closer to the centre, compared with H,. (3) C iv appears to provide a significantly less accurate, and possibly biased estimate of the black hole mass in AGN, compared with H,. (4) All objects where C iv is strongly blueshifted and asymmetric have a high L/LEdd, but the reverse is not true. This suggests that a high L/LEdd is a necessary but not sufficient condition for generating a blueshifted asymmetric C iv emission. (5) We also find indications for dust reddening and scattering in ,normal' AGN. In particular, PG quasars with a redder optical,UV continuum slope show weaker C iv emission, stronger C iv absorption and a higher optical continuum polarization. [source]


    A deep Chandra survey of the Groth Strip , I. The X-ray data

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2005
    K. Nandra
    ABSTRACT We present the results of a 200-ks Chandra observation of part of the Groth Strip region, using the ACIS-I instrument. We present a relatively simple method for the detection of point sources and calculation of limiting sensitivities, which we argue is at least as sensitive and more self-consistent than previous methods presented in the literature. A total of 158 distinct X-ray sources are included in our point-source catalogue in the ACIS-I area. The number counts show a relative dearth of X-ray sources in this region. For example, at a flux limit of 10,15 erg cm,2 s,1, around 20 per cent more soft-band sources are detected in the HDF-N and almost 50 per cent more in the ELAIS-N1 field, which we have analysed by the same method for comparison. We find, however, that these differences are consistent with Poisson variations at <2, significance, and therefore there is no evidence for cosmic variance based on these number counts alone. We determine the average spectra of the objects and find a marked difference between the soft-band-selected sources, which have ,= 1.9 typical of unobscured active galactic nuclei (AGN), and the hard-band-selected sources, which have ,= 1.0. Reassuringly, the sample as a whole has a mean spectrum of ,= 1.4 0.1, the same as the X-ray background. None the less, our results imply that the fraction of sources with significant obscuration is only ,25 per cent, much less than predicted by standard AGN population synthesis models. This is confirmed by direct spectral fitting, with only a handful of objects showing evidence for absorption. After accounting for absorption, all objects are consistent with a mean intrinsic spectrum of ,= 1.76 0.08, very similar to local Seyfert galaxies. The survey area is distinguished by having outstanding multiwaveband coverage. Comparison with these observations and detailed discussion of the X-ray source properties will be presented in future papers. [source]