Established Models (established + models)

Distribution by Scientific Domains


Selected Abstracts


Head and neck squamous cell carcinoma cell lines: Established models and rationale for selection

HEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 2 2007
Charles J. Lin BA
Abstract Background. Head and neck squamous cell carcinoma (HNSCC) cell lines are important preclinical models in the search for novel and targeted therapies to treat head and neck cancer. Unlike many other cancer types, a wide variety of primary and metastatic HNSCC cell lines are available. An easily accessible guide that organizes important characteristics of HNSCC cell lines would be valuable for the selection of appropriate HNSCC cell lines for in vitro or in vivo studies. Methods. A literature search was performed. Results. Cell growth and culture parameters from HNSCC cell lines were catalogued into tables or lists of selected characteristics. Methods for establishing cancer cell lines and basic cell culture maintenance techniques were reviewed. Conclusions. A compendium of HNSCC cell line characteristics is useful for organizing the accumulating information regarding cell line characteristics to assist investigators with the development of appropriate preclinical models. © 2006 Wiley Periodicals, Inc. Head Neck, 2006 [source]


Synergistic Combinations of Anticonvulsant Agents: What Is the Evidence from Animal Experiments?

EPILEPSIA, Issue 3 2007
Daniël M. Jonker
Summary:,Purpose: Combination therapy is often used in the treatment of seizures refractory to monotherapy. At the same time, the pharmacodynamic mechanisms that determine the combined efficacy of antiepileptic drugs (AEDs) are unknown, and this prevents a rational use of these drug combinations. We critically evaluate the existing evidence for pharmacodynamic synergism between AEDs from preclinical studies in animal models of epilepsy to identify useful combinations of mechanisms and to determine whether study outcome depends on the various research methods that are in use. Methods: Published articles were included if the studies were placebo-controlled, in vivo, or ex vivo animal studies investigating marketed or experimental AEDs. The animal models that were used in these studies, the primary molecular targets of the tested drugs, and the methods of interpretation were recorded. The potential association of these factors with the study outcome (synergism: yes or no) was assessed through logistic regression analysis. Results: In total, 107 studies were identified, in which 536 interaction experiments were conducted. In 54% of these experiments, the possibility of a pharmacokinetic interaction was not investigated. The majority of studies were conducted in the maximal electroshock model, and other established models were the pentylenetetrazole model, amygdala kindling, and the DBA/2 model. By far the most widely used method for interpretation of the results was evaluation of the effect of a threshold dose of one agent on the median effective dose (ED50) of another agent. Experiments relying on this method found synergism significantly more often compared with experiments relying on other methods (p < 0.001). Furthermore, experiments including antagonists of the AMPA receptor were more likely to find synergism in comparison with all other experiments (p < 0.001). Conclusions: Intensive preclinical research into the effects of AED combinations has not led to an understanding of the pharmacodynamic properties of AED combinations. Specifically, the majority of the preclinical studies are not adequately designed to distinguish between additive, synergistic, and antagonistic interactions. Quantitative pharmacokinetic,pharmacodynamic studies of selectively acting AEDs in a battery of animal models are necessary for the development of truly synergistic drug combinations. [source]


Mouse models in non-alcoholic fatty liver disease and steatohepatitis research

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 1 2006
Quentin M. Anstee
Summary Non-alcoholic fatty liver disease (NAFLD) represents a histological spectrum of liver disease associated with obesity, diabetes and insulin resistance that extends from isolated steatosis to steatohepatitis and cirrhosis. As well as being a potential cause of progressive liver disease in its own right, steatosis has been shown to be an important cofactor in the pathogenesis of many other liver diseases. Animal models of NAFLD may be divided into two broad categories: those caused by genetic mutation and those with an acquired phenotype produced by dietary or pharmacological manipulation. The literature contains numerous different mouse models that exhibit histological evidence of hepatic steatosis or, more variably, steatohepatitis; however, few replicate the entire human phenotype. The genetic leptin-deficient (ob/ob) or leptin-resistant (db/db) mouse and the dietary methionine/choline-deficient model are used in the majority of published research. More recently, targeted gene disruption and the use of supra-nutritional diets to induce NAFLD have gained greater prominence as researchers have attempted to bridge the phenotype gap between the available models and the human disease. Using the physiological processes that underlie the pathogenesis and progression of NAFLD as a framework, we review the literature describing currently available mouse models of NAFLD, highlight the strengths and weaknesses of established models and describe the key findings that have furthered the understanding of disease pathogenesis. [source]


Chemical alteration of tephra in the depositional environment: theoretical stability modelling

JOURNAL OF QUATERNARY SCIENCE, Issue 5 2003
A. M. Pollard
Abstract The study of the chemical stability of vitreous material in aqueous media is well-established. There has to date been little consideration of the implications of variations in the chemical durability of tephra in Quaternary tephrochronology. Chemical alteration can take the form of cationic leaching from the matrix, or complete destruction of the silica network, either of which could constrain the ability to chemically identify distal tephra. Here we apply established models of vitreous durability to the published chemical analyses of a large number of Icelandic tephras in order to predict their relative durabilities under equivalent conditions. This suggests that some important tephras have relatively poor chemical stability, and that rhyolitic tephras are, in general, more stable than basaltic. We conclude that tephras should be expected to show predictable differential chemical stability in the post-depositional environment. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Structural characterization of unphosphorylated STAT5a oligomerization equilibrium in solution by small-angle X-ray scattering

PROTEIN SCIENCE, Issue 4 2009
Pau Bernadó
Abstract Signal transducer and activator of transcription (STAT) proteins play a crucial role in the activation of gene transcription in response to extracellular stimuli. The regulation and activity of these proteins require a complex rearrangement of the domains. According to the established models, based on crystallographic data, STATs convert from a basal antiparallel inactive dimer into a parallel active one following phosphorylation. The simultaneous analysis of small-angle X-ray scattering data measured at different concentrations of unphosphorylated human STAT5a core domain unambiguously identifies the simultaneous presence of a monomer and a dimer. The dimer is the minor species but could be structurally characterized by SAXS in the presence of the monomer using appropriate computational tools and shown to correspond to the antiparallel assembly. The equilibrium is governed by a moderate dissociation constant of Kd , 90 ,M. Integration of these results with previous knowledge of the N-terminal domain structure and dissociation constants allows the modeling of the full-length protein. A complex network of intermolecular interactions of low or medium affinity is suggested. These contacts can be eventually formed or broken to trigger the dramatic modifications in the dimeric arrangement needed for STAT regulation and activity. [source]