Established Cell Lines (established + cell_line)

Distribution by Scientific Domains


Selected Abstracts


Enhancement of gene expression by a peptide p(CHWPR) produced by Bifidobacterium lactis BB-12

MICROBIOLOGY AND IMMUNOLOGY, Issue 3 2008
Takashi Mitsuma
ABSTRACT Recently, probiotics, including Bifidobacterium, Lactobacillus, and Enterococcus, among other organisms, have been clinically applied for their enhancing effects on defense mechanisms. It is reported that gene expression in somatic cells can be activated by autoinducers, which are hormone-like molecules produced in a microbial QS system. In the present study, based on a hypothesis that a low-molecular substance related to the QS system is involved in the probiotics effects of Bifidobacterium, we intended to extract the low-molecular substance. As a result, we successfully isolated the peptide p(CHWPR), which was composed of five amino acids including Cys, His, Trp, Pro, and Arg, and found that the peptide was produced in the stationary phase of bacterial growth and that it could enhance the gene expression of oxalyl-CoA decarboxylase (Oxc). p(CHWPR) enhanced the gene expression of c-myc and interleukin (IL)-6 in an established cell line, HL-60. We demonstrated that p(CHWPR) penetrates the cell membrane and binds specifically to ROR,, which is a cytosolic nuclear receptor. This suggests that ROR, bound to p(CHWPR) would bind to promoter regions of the c-myc gene. Furthermore, we found that p(CHWPR) also bound to a transcriptional avtivation subunit, CRSP70; this suggests that p(CHWPR), ROR,, and CRSP70 in combination enhance transcription activity. [source]


Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes,

HEPATOLOGY, Issue 5 2010
Hua Liu
Recent advances in induced pluripotent stem (iPS) cell research have significantly changed our perspective on regenerative medicine. Patient-specific iPS cells have been derived not only for disease modeling but also as sources for cell replacement therapy. However, there have been insufficient data to prove that iPS cells are functionally equivalent to human embryonic stem (hES) cells or are safer than hES cells. There are several important issues that need to be addressed, and foremost are the safety and efficacy of human iPS cells of different origins. Human iPS cells have been derived mostly from cells originating from mesoderm and in a few cases from ectoderm. So far, there has been no report of endoderm,derived human iPS cells, and this has prevented comprehensive comparative investigations of the quality of human iPS cells of different origins. Here we show for the first time reprogramming of human endoderm-derived cells (i.e., primary hepatocytes) to pluripotency. Hepatocyte-derived iPS cells appear indistinguishable from hES cells with respect to colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, and differentiation potential in embryoid body formation and teratoma assays. In addition, these cells are able to directly differentiate into definitive endoderm, hepatic progenitors, and mature hepatocytes. Conclusion: The technology to develop endoderm,derived human iPS cell lines, together with other established cell lines, will provide a foundation for elucidating the mechanisms of cellular reprogramming and for studying the safety and efficacy of differentially originated human iPS cells for cell therapy. For the study of liver disease pathogenesis, this technology also provides a potentially more amenable system for generating liver disease-specific iPS cells. (HEPATOLOGY 2010;51:1810,1819) [source]


Characterization of apoptosis induced by grouper iridovirus in two newly established cell lines from barramundi, Lates calcarifer (Bloch)

JOURNAL OF FISH DISEASES, Issue 11 2008
Y-S Lai
Abstract Two new cell lines have been established from the muscle and swim bladder tissues of barramundi, Lates calcarifer, and designated as BM (barramundi muscle) and BSB (barramundi swimbladder), respectively. The cells multiplied well at 28 °C in Leibovitz's L-15 medium supplemented with 10% foetal bovine serum, and have been continuously subcultured more than 100 times to date. Morphologically, BM cells were mostly fibroblastic, whereas BSB were mostly epithelial. Both cell lines were susceptible to grouper iridovirus (GIV) and displayed characteristics of apoptosis after viral infection. The induction of apoptosis was further assayed in GIV-infected BM and BSB cells by various methods. The inhibition of cell growth by GIV was demonstrated by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Morphological observations revealed typical apoptotic features in the infected cells, including cell shrinkage and rounding, chromosome condensation and formation of apoptotic body-like vesicles. Chromosome fragmentation was detected by DNA laddering and TUNEL assays. Finally, the appearance of phosphotidylserine on the outer leaflet of apoptotic cell membranes was confirmed by annexin V staining. This is the first report of apoptosis induced by GIV in fish cells. [source]


Defective human T-cell leukaemia virus type 1 (HTLV-1) genomes: No evidence in serologically indeterminate german blood donors but new type detected in established cell lines

JOURNAL OF MEDICAL VIROLOGY, Issue 1 2002
V.A. Morozov
Abstract Individuals reactive in antibody screening tests (ELISA) and with one or more reactions to HTLV-1 proteins on Western blotting, but lacking the criteria of a confirmed HTLV infection, are not exceptional in regions with a low prevalence of HTLV-1/-2 infections. PCR analysis of these indeterminate samples, using "diagnostic" pol and tax sets of primers, give negative results. However, expression of HTLV-1 defective proviruses with internal deletions undetectable by PCR with diagnostic primers could have taken place. Seven German HTLV-1 ELISA-reactive blood donors, who showed reactivity also in Western blots against several viral proteins, and twenty haemophiliacs, were examined by nested PCR and/or PCR/Southern hybridisation with primers designed for detection of HTLV-1 defective proviruses. No HTLV-1-specific amplification products were obtained. However, HTLV-1 defective proviruses with large internal deletions were detected in four out of five cell lines established from symptomatic HTLV-1 cases and two in HUT-102 cells. In two amplicons, short inverted rRNA sequences between gag and env fragments of HTLV-1 defective proviruses were revealed. These results do not exclude the presence of defective HTLV-1 proviruses in individuals with indeterminate serology although this is unlikely. J. Med. Virol. 66:102,106, 2002. © 2002 Wiley-Liss, Inc. [source]


New established melanoma cell lines: genetic and biochemical characterization of cell division cycle

JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 1 2003
A Vozza
ABSTRACT Background Cancer might be envisaged as the result of a genetic process causing the unregulated proliferation of a given cell as well as its inability to undergo differentiation and/or apoptosis. Alterations of genes regulating cell division cycle appear to play a key role in the development of human cancer. Objective On the bases of the above considerations, we decided to establish new cell lines from human melanoma specimens, in order to analyse the molecular alterations in primary preparations of malignant cells. Results The present paper describes two new established cell lines and their genetic and biochemical features. Both the melanoma cell lines show inactivation of the cyclin-dependent kinase inhibitor gene, CDKN2A/p16INK4A, thus demostrating that this alteration occurs in primary human melanomas. No other alterations were observable when we investigated several different cell cycle genes including those encoding cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors. Analyses at protein level by means of immunoblotting confirmed the results obtained at the genetic level. Moreover, the inducibility of a pivotal cyclin-dependent kinase inhibitor gene, namely p21CIP1 gene, was obtained by treating the cells with histone deacetylase inhibitors, namely butyrate and phenylbutyrate. Conclusions Our results suggest a primary role of cyclin-dependent kinase inhibitor genes inactivation in the origin of human melanoma and allow the proposal of new therapeutic strategies based on the transcriptional activation of p21CIP1 gene. [source]


Comparative Proteomics Analysis of the Proteins Associated With Laryngeal Carcinoma-Related Gene 1,

THE LARYNGOSCOPE, Issue 2 2006
Xiaopeng Zhang PhD
Abstract Objectives: A novel gene, laryngeal carcinoma-related gene 1 (LCRG1), had the characteristics of tumor-suppressor genes. It was cloned in our laboratory. The objective was to find and characterize the proteins related to LCRG1 and to elucidate the molecular mechanism of LCRG1. Study Design: We used the established cell lines of Hep-2/LCRG1 (Hep-2 cells transfected by recombinant plasmid pcDNA3.1[+]/LCRG1) and Hep-2/pcDNA3.1(+) (Hep-2 cells transfected by control vector pcDNA3.1[+]) as cell models. Methods: Two-dimensional gel electrophoresis (2-DE) technology was performed to separate the proteins of Hep-2/LCRG1 and Hep-2/pcDNA3.1(+) cell lines, respectively. The differential protein spots were analyzed by software analysis, subject to in-gel digestion, and identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and electrospray ionization,quadruple time-of-flight MS/MS (ESI-Q-TOF MS/MS). Then the differential expression levels of partial identified proteins were determined by Western blotting analysis and quantitative real-time reverse transcriptase,polymerase chain reaction. Results: The results showed the attained 2-DE patterns of the two cell lines were well-resolved and reproducible. There were 1075 ± 43 and 1027 ± 23 protein spots observed in Hep-2/LCRG1 and Hep-2/pcDNA3.1(+) cell lines, respectively. The average matching rate of the two cell lines was 91%. Twenty-six differentially expressed protein spots were identified (twenty spots for MALDI-TOF-MS, six spots for ESI-Q-TOF MS/MS). Most of the characterized proteins were characterized as the members of enzymes (phosphoglycerate mutase, manganese superoxide dismutase, and so on), transcription proteins (rho gdp dissociation inhibitor), and so on. Those identified proteins might contribute to the tumor-suppressive function of LCRG1. The differential expression levels of the partial proteins were confirmed by real-time polymerase chain reaction and Western blotting. Conclusions: We tentatively proposed those differentially expressed proteins were involved in the tumor-suppressive process related to LCRG1. These data will be helpful to elucidate the molecular mechanism of LCRG1. [source]