Home About us Contact | |||
EST Database (est + database)
Selected AbstractsCloning and characterization of an immunoglobulin A Fc receptor from cattleIMMUNOLOGY, Issue 2 2004H. Craig Morton Summary Here, we describe the cloning, sequencing and characterization of an immunoglobulin A (IgA) Fc receptor from cattle (bFc,R). By screening a translated EST database with the protein sequence of the human IgA Fc receptor (CD89) we identified a putative bovine homologue. Subsequent polymerase chain reaction (PCR) amplification confirmed that the identified full-length cDNA was expressed in bovine cells. COS-1 cells transfected with a plasmid containing the cloned cDNA bound to beads coated with either bovine or human IgA, but not to beads coated with bovine IgG2 or human IgG. The bFc,R cDNA is 873 nucleotides long and is predicted to encode a 269 amino-acid transmembrane glycoprotein composed of two immunoglobulin-like extracellular domains, a transmembrane region and a short cytoplasmic tail devoid of known signalling motifs. Genetically, bFc,R is more closely related to CD89, bFc,2R, NKp46, and the KIR and LILR gene families than to other FcRs. Moreover, the bFc,R gene maps to the bovine leucocyte receptor complex on chromosome 18. Identification of the bFc,R will aid in the understanding of IgA,Fc,R interactions, and may facilitate the isolation of Fc,R from other species. [source] Carbonic anhydrases in plants and algaePLANT CELL & ENVIRONMENT, Issue 2 2001J. V. Moroney ABSTRACT Carbonic anhydrases catalyse the reversible hydration of CO2, increasing the interconversion between CO2 and HCO3, + H+ in living organisms. The three evolutionarily unrelated families of carbonic anhydrases are designated ,-, ,-and ,-CA. Animals have only the ,-carbonic anhydrase type of carbonic anhydrase, but they contain multiple isoforms of this carbonic anhydrase. In contrast, higher plants, algae and cyanobacteria may contain members of all three CA families. Analysis of the Arabidopsis database reveals at least 14 genes potentially encoding carbonic anhydrases. The database also contains expressed sequence tags (ESTs) with homology to most of these genes. Clearly the number of carbonic anhydrases in plants is much greater than previously thought. Chlamydomonas, a unicellular green alga, is not far behind with five carbonic anhydrases already identified and another in the EST database. In algae, carbonic anhydrases have been found in the mitochondria, the chloroplast thylakoid, the cytoplasm and the periplasmic space. In C3 dicots, only two carbonic anhydrases have been localized, one to the chloroplast stroma and one to the cytoplasm. A challenge for plant scientists is to identify the number, location and physiological roles of the carbonic anhydrases. [source] Proteome analysis of the responses of Panax ginseng C. A. Meyer leaves to high light: Use of electrospray ionization quadrupole-time of flight mass spectrometry and expressed sequence tag dataPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 12 2003Myung Hee Nam Abstract We performed comparative proteomic analyses in order to understand the physiological responses of ginseng (Panax ginseng C. A. Meyer) to high light (HL). As a first step, we analyzed the proteins expressed in ginseng leaves. Proteins extracted from leaves were separated by two-dimensional polyacrylamide gel electrophoresis. Protein spots were identified by tandem mass spectra analysis using electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS). We used a ginseng expressed sequence tag (EST) database as well as a nonredundant protein database from NCBI to identify proteins. Eighty-one proteins were identified using the nr protein database, 51 of which were also verified from the ginseng EST database. An additional 66 proteins were identified only from the ginseng EST database. Proteins that function in energy metabolism, protein stabilization, and protection against oxidative stress were abundant. To understand the light responses of ginseng leaves, we studied time dependent changes in expressed proteins produced by 0,4 h of HL exposure. Six HL-responsive proteins were identified: three proteins were up-regulated (cytosolic small heat-shock protein, cytosolic ascorbate peroxidase, and putative major latex-like protein) and three proteins were down-regulated (Rieske Fe/S protein, putative 3-beta hydroxysteroid dehydrogenase/isomerase-like protein, and oxygen-evolving enhancer-like protein). Our results show that the ginseng EST database combined with ESI Q-TOF MS analysis can be used to identify ginseng proteins and to elucidate the protective mechanism of ginseng against HL induced damage. [source] Development of polymorphic expressed sequence tag-derived microsatellites for the extension of the genetic linkage map of the black tiger shrimp (Penaeus monodon)ANIMAL GENETICS, Issue 4 2006C. Maneeruttanarungroj Summary In this study, microsatellite markers were developed for the genetic linkage mapping and breeding program of the black tiger shrimp Penaeus monodon. A total of 997 unique microsatellite-containing expressed sequence tags (ESTs) were identified from 10 100 EST sequences in the P. monodon EST database. AT-rich microsatellite types were predominant in the EST sequences. Homology searching by the blastn and blastx programs revealed that these 997 ESTs represented 8.6% known gene products, 27.8% hypothetical proteins and 63.6% unknown gene products. Characterization of 50 markers on a panel of 35,48 unrelated shrimp indicated an average number of alleles of 12.6 and an average polymorphic information content of 0.723. These EST microsatellite markers along with 208 other markers (185 amplified fragment length polymorphisms, one exon-primed intron-crossing, six single strand conformation polymorphisms, one single nucleotide polymorphism, 13 non-EST-associated microsatellites and two EST-associated microsatellites) were analysed across the international P. monodon mapping family. A total of 144 new markers were added to the P. monodon maps, including 36 of the microsatellite-containing ESTs. The current P. monodon male and female linkage maps have 47 and 36 linkage groups respectively with coverage across half the P. monodon genome. [source] Linkage mapping of gene-associated SNPs to pig chromosome 11ANIMAL GENETICS, Issue 3 2006M. Sawera Summary Single nucleotide polymorphisms (SNPs) were discovered in porcine expressed sequence tags (ESTs) orthologous to genes from human chromosome 13 (HSA13) and predicted to be located on pig chromosome 11 (SSC11). The SNPs were identified as sequence variants in clusters of EST sequences from pig cDNA libraries constructed in the Sino,Danish pig genome project. In total, 312 human gene sequences from HSA13 were used for similarity searches in our pig EST database. Pig ESTs showing significant similarity with HSA13 genes were clustered and candidate SNPs were identified. Allele frequencies for 26 SNPs were estimated in a group of 80 unrelated pigs from Danish commercial pig breeds: Duroc, Hampshire, Landrace and Large White. Eighteen of the 26 SNPs genotyped in the PiGMaP Reference Families were mapped by linkage analysis to SSC11. The EST-based SNPs published here are new genetic markers useful for linkage and association studies in commercial and experimental pig populations. This study represents the first gene-associated SNP linkage map of pig chromosome 11 and adds new comparative mapping information between SSC11 and HSA13. Furthermore, our data facilitate future studies aimed at the identification of interesting regions on pig chromosome 11, positional cloning and fine mapping of quantitative trait loci in pig. [source] Three-dimensional structural characterization of a novel Drosophila melanogaster acylphosphataseACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2004Simone Zuccotti Analysis of the Drosophila melanogaster EST database led to the discovery and cloning of a novel acylphosphatase. The CG18505 gene coding for a new enzyme (AcPDro2) is clearly distinct from the previously described CG16870Acyp gene, which also codes for a D. melanogaster acylphosphatase (AcPDro). The putative catalytic residues, together with residues held to stabilize the acylphosphatase fold, are conserved in the two encoded proteins. Crystals of AcPDro2, which belong to the trigonal space group P3121, with unit-cell parameters a = b = 45.8, c = 98.6,Å, , = 120°, allowed the solution of the protein structure by molecular replacement and its refinement to 1.5,Å resolution. The AcPDro2 active-site structure is discussed. [source] |