Escape Performance (escape + performance)

Distribution by Scientific Domains


Selected Abstracts


Ontogeny of escape swimming performance in the spotted salamander

FUNCTIONAL ECOLOGY, Issue 3 2010
Tobias Landberg
Summary 1.,The life stage suffering the highest predation rate is expected to have the highest escape performance unless developmental or functional constraints interfere. Peak aquatic escape performance in ephemeral pond-breeding amphibians is expected to develop early in the larval period, and metamorphosis is expected to reduce or completely disrupt aquatic escape performance. In anurans, exceptionally low escape performance during metamorphosis creates selection favouring rapid metamorphosis , which minimizes the time individuals spend in the vulnerable transition between tadpole and frog. 2.,We investigated the development of aquatic escape performance in the spotted salamander, Ambystoma maculatum (Shaw, 1802), from embryonic development through metamorphosis. We expected performance to peak early in the larval period as hatchlings face high rates of predation but embryos must first develop escape behaviours. We also tested whether escape performance during metamorphosis was intermediate, as predicted by tail fin resorption, or lower than larvae and adults indicating a major physiological disruption. 3.,Escape performance shows a complex ontogeny that is first positively influenced by embryonic and early larval development and then negatively correlated with tail resorption and body size. Escape distance was the only performance metric not affected by life stage. In contrast, both escape velocity and duration showed ontogenetic peaks early in the larval period with the lowest performance found in early embryos and adults and intermediate performance during metamorphosis. 4.,This pattern suggests that metamorphosis does not impose a major physiological disruption on escape performance. Because spotted salamanders do not pass through a frog-like ,ontogenetic performance valley' during metamorphosis, they may be less subject than anurans to selection favouring rapid metamorphosis. 5.,Functional implications of phenotypic variation should be considered in an ontogenetic framework because the relationship between body size and escape performance can be reversed on either side of an ontogenetic performance peak. The assumption that metamorphosis radically disrupts basic functions such as predator evasion does not seem universally warranted and suggests examination of ontogenetic performance trajectories in a diversity of animals with complex life cycles. [source]


Wing wear, aerodynamics and flight energetics in bumblebees (Bombus terrestris): an experimental study

FUNCTIONAL ECOLOGY, Issue 4 2001
A. Hedenström
Summary 1,Previous work has shown that wing wear increases mortality rate in bumblebees. Two proximate explanations have been suggested to account for this: increased energy flight costs and increased predation risk due to reduced manoeuvrability. 2,Wing wear was mimicked by experimentally clipping the forewing distal trailing edge, causing a 10% wing area reduction. Experimental and sham control bumblebees were induced to hover in a flight respirometry chamber for measuring metabolic rate of hovering. Simultaneous video and sound recordings were taken for wingbeat kinematic data required for an aerodynamic analysis. 3,In the experimental group with reduced wing area we measured increased wingbeat frequency, lift coefficient and induced power, but a reduced profile power. The mechanical power output, assuming perfect elastic storage in the flight system, remained largely unchanged after the wing-trimming treatment. 4,Metabolic flight costs (CO2 production rate) did not increase significantly in the reduced wing area group, which is in line with the aerodynamic power output. 5,Our results indicate that an increase of flight cost due to wing wear is not a likely explanation for increased mortality rate in bumblebees. Wing wear may, however, affect escape performance from predators. [source]


Survival selection on escape performance and its underlying phenotypic traits: a case of many-to-one mapping

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2009
F. STROBBE
Abstract Selection often operates not directly on phenotypic traits but on performance which is important as several traits may contribute to a single performance measure (many-to-one mapping). Although largely ignored in the context of selection, this asks for studies that link all relevant phenotypes with performance and fitness. In an enclosure experiment, we studied links between phenotypic traits, swimming performance and survival in two Enallagma damselflies. Predatory dragonflies imposed survival selection for increased swimming propensity and speed only in E. annexum; probably E. aspersum was buffered by the former species' presence. Accordingly, more circular caudal lamellae, structures involved in generating thrust while swimming, were selected for only in E. annexum. Other phenotypic traits that contributed to swimming speed were apparently not under selection, probably because of many-to-one mapping (functional redundancy). Our results indicate that not only the phenotypic distributions of syntopic prey organisms but also many-to-one mapping should be considered when documenting phenotype,performance,fitness relationships. [source]