ERK Signaling Pathway (erk + signaling_pathway)

Distribution by Scientific Domains


Selected Abstracts


Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling

GLIA, Issue 4 2008
Makoto Tsuda
Abstract Painful neuropathy is one of the most common complications of diabetes, one hallmark of which is tactile allodynia (pain hypersensitivity to innocuous stimulation). The underlying mechanisms of tactile allodynia are, however, poorly understood. Emerging evidence indicates that, following nerve injury, activated microglia in the spinal cord play a crucial role in tactile allodynia. However, it remains unknown whether spinal microglia are activated under diabetic conditions and whether they contribute to diabetes-induced tactile allodynia. In the present study, using streptozotocin (STZ)-induced diabetic rats that displayed tactile allodynia, we found several morphological changes of activated microglia in the dorsal horn. These included increases in Iba1 and OX-42 labeling (markers of microglia), hypertrophic morphology, the thickness and the retraction of processes, and in the number of activated microglia cells. Furthermore, in the dorsal horn of STZ diabetic rats, extracellular signal-regulated protein kinase (ERK) and an upstream kinase, Src-family kinase (SFK), both of which are implicated in microglial functions, were activated exclusively in microglia. Moreover, inhibition of ERK phosphorylation in the dorsal horn by intrathecal administration of U0126, an inhibitor of ERK activation, produced a striking alleviation of existing, long-term tactile allodynia of diabetic rats. We also found that a single administration of U0126 reduced the expression of allodynia. Together, these results suggest that activated dorsal horn microglia may be a crucial component of diabetes-induced tactile allodynia, mediated, in part, by the ERK signaling pathway. Thus, inhibiting microglia activation in the dorsal horn may represent a therapeutic strategy for treating diabetic tactile allodynia. © 2008 Wiley-Liss, Inc. [source]


MEK/ERK Signaling Controls Osmoregulation of Nucleus Pulposus Cells of the Intervertebral Disc by Transactivation of TonEBP/OREBP,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2007
Tsung-Ting Tsai
Abstract Earlier studies have shown that intervertebral disc cells express TonEBP, a transcription factor that permits adaptation to osmotic stress and regulates aggrecan gene expression. However, the mechanism of hyperosmotic activation of TonEBP in disc cells is not known. Results of this study show that hypertonic activation of ERK signaling regulates transactivation activity of TonEBP, modulating its function. Introduction: In an earlier report, we showed that tonicity enhancer binding protein (TonEBP) positively regulates aggrecan gene expression in disc cells, thereby autoregulating its osmotic environment. Although these studies indicated that the cells of the nucleus pulposus were optimally adapted to a hyperosmotic state, the mechanism by which the cells transduce the osmotic stress was not delineated. The primary goal of this study was to test the hypothesis that, in a hyperosmotic medium, the extracellular signal-regulated kinase (ERK) signaling pathway regulated TonEBP activity. Materials and Methods: Nucleus pulposus cells were maintained in isotonic or hypertonic media, and MAPK activation and TonEBP expression were analyzed. To study the role of MAPK in regulation of TonEBP function, gel shift and luciferase reporter assays were performed. ERK expression in cells was modulated by using expression plasmids or siRNA, and transactivation domain (TAD)-TonEBP activity was studied. Results: We found that hypertonicity resulted in phosphorylation and activation of ERK1/2 proteins and concomitant activation of C terminus TAD activity of ELK-1, a downstream transcription factor. In hypertonic media, treatment with ERK and p38 inhibitors resulted in downregulation of TonE promoter activity of TauT and HSP-70 and decreased binding of TonEBP to TonE motif. Similarly, forced expression of DN-ERK and DN-p38 in nucleus pulposus cells suppressed TauT and HSP-70 reporter gene activity. Finally, we noted that ERK was needed for transactivation of TonEBP. Expression of DN-ERK significantly suppressed, whereas, WT-ERK and CA-MEK1 enhanced, TAD activity of TonEBP. Experiments performed with HeLa cells indicated that the ERK signaling pathway also served a major role in regulating the osmotic response in nondiscal cells. Conclusions: Together, these studies showed that adaptation of the nucleus pulposus cells to their hyperosmotic milieu is dependent on activation of the ERK and p38- MAPK pathways acting through TonEBP and its target genes. [source]


Fluid Flow Induction of Cyclo-Oxygenase 2 Gene Expression in Osteoblasts Is Dependent on an Extracellular Signal-Regulated Kinase Signaling Pathway,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2002
Sunil Wadhwa
Abstract Mechanical loading of bone may be transmitted to osteocytes and osteoblasts via shear stresses at cell surfaces generated by the flow of interstitial fluid. The stimulated production of prostaglandins, which mediates some effects of mechanical loading on bone, is dependent on inducible cyclo-oxygenase 2 (COX-2) in bone cells. We examined the fluid shear stress (FSS) induction of COX-2 gene expression in immortalized MC3T3-E1 osteoblastic cells stably transfected with ,371/+70 base pairs (bp) of the COX-2 5,-flanking DNA (Pluc371) and in primary osteoblasts (POBs) from calvaria of mice transgenic for Pluc371. Cells were plated on collagen-coated glass slides and subjected to steady laminar FSS in a parallel plate flow chamber. FSS, from 0.14 to10 dynes/cm2, induced COX-2 messenger RNA (mRNA) and protein. FSS (10 dynes/cm2) induced COX-2 mRNA within 30 minutes, with peak effects at 4 h in MC3T3-E1 cells and at ,8 h in POBs. An inhibitor of new protein synthesis puromycin blocked the peak induction of COX-2 mRNA by FSS. COX-2 promoter activity, measured as luciferase activity, correlated with COX-2 mRNA expression in both MC3T3-E1 and POB cells. FSS induced phosphorylation of extracellular signal-regulated kinase (ERK) in MC3T3-E1 cells, with peak effects at 5 minutes. Inhibiting ERK phosphorylation with the specific inhibitor PD98059 inhibited FSS induction of COX-2 mRNA by 55-70% and FSS stimulation of luciferase activity by ,80% in both MC3T3-E1 and POB cells. We conclude that FSS transcriptionally induces COX-2 gene expression in osteoblasts, that the maximum induction requires new protein synthesis, and that induction occurs largely via an ERK signaling pathway. [source]


Ethanol Attenuates the HFS-Induced, ERK-Mediated LTP in a Dose-Dependent Manner in Rat Striatum

ALCOHOLISM, Issue 1 2009
Gui Qin Xie
Background:, The striatum has been implicated to play a role in the control of voluntary behavior, and striatal synaptic plasticity is involved in instrumental learning. Ethanol is known to alter synaptic plasticity, in turn altering the behavior of human and animals. However, it remains unclear whether the striatum plays a role in the effects of ethanol on the central nervous system. The objective of this investigation was to study the effects of acute perfusion of ethanol on long-term potentiation (LTP) to elucidate the mechanisms of addictive drugs in the striatum. In addition, we investigated the contribution of intracellular extracellular signal regulated protein kinase (ERK) signaling pathway to corticostriatal LTP induction. Methods:, The stimulation evoked population spikes (PS) were recorded from the dorsomedial striatum (DMS) slices of rat using the extracellular recording technique. The LTP in DMS slices was induced by high-frequency stimulation (HFS). The ERK level of the DMS was assessed with the Western blot technique. Results:, U0126, the inhibitor of ERK, eliminated or significantly attenuated the LTP induced by HFS of the PS in the DMS. MK801 and APV, N -methyl- d -aspartic acid receptor (NMDAR) antagonists, inhibited the induction of striatal LTP, and HFS-induced ERK activation decreased in the slices treated with MK801 in the DMS. Clinically relevant concentrations of ethanol (22 to 88 mM) dose-dependently attenuated the HFS-induced striatal LTP and ERK activation in this brain region. Conclusions:, The LTP of the PS in the DMS is, at least partly, mediated by the ERK pathway coupling to NMDARs. Ethanol attenuated the HFS-induced, ERK-mediated LTP in a dose-dependent manner in this brain region. These results indicate that ethanol may change the synaptic plasticity of corticostriatal circuits underlying the learning of goal-directed instrumental actions, which is mediated by an intracellular ERK signaling pathway associated with NMDARs. [source]


Extracellular signal-regulated protein kinase is activated in cervical intraepithelial neoplasms but inactivated in invasive cervical carcinoma

PATHOLOGY INTERNATIONAL, Issue 7 2006
Keiko Matsuura
The extracellular signal-regulated protein kinase (ERK) signaling pathway has been reported to play important roles in cell growth in various neoplasms. The purpose of the present study was to immunohistochemically analyze the phosphorylation status (activity) of ERK in 24 cases of cervical carcinoma using an antiphosphorylated ERK antibody (,p-ERK Ab) that specifically recognizes the phosphorylated form of ERK (p-ERK). In normal cervical epithelium, p-ERK was found to be confined to basal cells that were negative for Ki-67, suggesting that ERK was not activated in proliferating normal cervical epithelium. In cervical intraepithelial neoplasms (CIN), increased abnormal parabasal cells were positive for both p-ERK and Ki-67, suggesting that ERK activation in CIN may be involved in tumor cell proliferation. In contrast, it was found that, in invasive cervical carcinomas, almost all the carcinoma cells were positive for Ki-67 but negative for p-ERK, suggesting that, in contrast to many other types of cancers, the ERK signaling pathway is downregulated in invasive cervical carcinoma. These findings suggest that the phosphorylation status of ERK differs between CIN and invasive carcinomas, and that downregulation of the ERK signaling pathway may contribute to transformation of CIN to invasive cervical carcinomas. [source]


Norcantharidin induces HT-29 colon cancer cell apoptosis through the ,v,6,extracellular signal-related kinase signaling pathway

CANCER SCIENCE, Issue 12 2009
Cheng Peng
Norcantharidin has been used as an efficacious anticancer drug in China for many years, but its true mechanism remains poorly understood. Intriguingly, in an in vitro series study of anticancer drugs, we found that norcantharidin can effectively inhibit epithelial tumor cells from expressing integrin ,v,6. Our previous studies have confirmed that integrin ,v,6 is closely relevant to malignant epithelial cell tumor biology behavior, and it can promote cancer cells to invade and metastasize through a special ,v,6,extracellular signal-related kinase (ERK) direct signaling pathway. In this study, we investigated the relationship between the norcantharidin anticancer mechanism and integrin ,v,6. After HT-29 colon cancer cells were treated with norcantharidin, cell apoptosis increased remarkably. The expression of ,v,6 and the amount of p-ERK decreased substantially; simultaneously, the linkage between ,v,6 and ERK was barely detectable. However, the expression of other integrins and the levels of mitogen-activated protein kinase hardly changed. On these grounds, we presumed that norcantharidin induced HT-29 colon cancer cell apoptosis through the ,v,6,ERK signaling pathway. This finding elicited a novel strategy for targeting the whole ,v,6,ERK signal pathway, rather than simply blocking the combining site of ,v,6,ERK in colon cancer treatment. (Cancer Sci 2009; 100: 2302,2308) [source]