Epigenetic Regulation (epigenetic + regulation)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Epigenetic regulation in neural stem cell differentiation

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2010
Berry Juliandi
The central nervous system (CNS) is composed of three major cell types , neurons, astrocytes, and oligodendrocytes , which differentiate from common multipotent neural stem cells (NSCs). This differentiation process is regulated spatiotemporally during the course of mammalian development. It is becoming apparent that epigenetic regulation is an important cell-intrinsic program, which can interact with transcription factors and environmental cues to modulate the differentiation of NSCs. This knowledge is important given the potential of NSCs to produce specific CNS cell types that will be beneficial for clinical applications. Here we review recent findings that address molecular mechanisms of epigenetic and transcription factor-mediated regulation that specify NSC fate during CNS development, with a particular focus on the developing mammalian forebrain. [source]


Epigenetic regulation of the imprinted U2af1-rs1 gene during retinoic acid-induced differentiation of embryonic stem cells

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2006
Noelia Andollo
Epigenetic modifications such as DNA methylation and changes in chromatin structure are changes in the chemical composition or structure of DNA that work by regulating gene expression. Their mechanisms of action have been generally studied in imprinted genes. The present work analyzes the involvement of these mechanisms in the expression of the U2af1-rs1 imprinted gene during the differentiation process of embryonic stem (ES) cells induced by retinoic acid. By DNA digestion with methylation-dependent or independent restriction enzymes and consecutive Southern blot, we have found that methylation of the U2af1-rs1 gene increases in differentiated ES cells and in embryoid bodies. However, northern blot and real-time reverse transcription,polymerase chain reaction analysis showed a higher expression of the U2af1-rs1 gene in differentiated ES cells and in embryoid bodies than in undifferentiated ones. On the other hand, the sensitivity to DNase-I assay demonstrated an open chromatin conformation for differentiated cells with regard to undifferentiated ES cells. Our results suggest that the expression of the U2af1-rs1 gene would be regulated by changes in chromatin structure rather than by DNA methylation during the RA-induced process of differentiation of ES cells. [source]


Epigenetic regulation and downstream targets of the Rhox5 homeobox gene

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 5 2008
S. Shanker
Summary The discovery of the Rhox homeobox gene cluster on the X chromosome opens up new vistas in the regulation of reproductive processes in mammals. In mice, this cluster comprises more than 30 genes that are selectively expressed in reproductive tissues. A subset of Rhox genes are androgen and AR regulated in postnatal and adult Sertoli cells, making them candidates to mediate androgen-dependent steps during spermatogenesis. The best characterized of these androgen/AR-regulated genes is Rhox5 (Pem), the founding member of the Rhox gene cluster. Targeted deletion of Rhox5 in mice causes male subfertility marked by increased germ-cell apoptosis and decreased sperm count and motility. Microarray analyses identified a wide variety of genes regulated by Rhox5 in Sertoli cells. One of them is the tumour suppressor UNC5C, a pro-apoptotic molecule previously only known to be involved in brain development. Targeted deletion of Unc5c causes decreased germ-cell apoptosis in postnatal and adult testes, indicating that it also has a role in spermatogenesis and supporting a model in which Rhox5 promotes germ-cell survival by downregulating Unc5c. Rhox5 has two independently regulated promoters that have distinct expression patterns. The unique tissue-specific and developmentally regulated transcription pattern of these two promoters appear to be controlled by DNA methylation. Both promoters are methylated in tissues in which they are not expressed, suggesting that DNA methylation serves to repress Rhox5 expression in inappropriate cell types and tissues. In summary, the Rhox gene cluster is an epigenetically regulated set of genes encoding a large number of transcription factors that are strong candidates to regulate gametogenesis and other aspects of reproduction. [source]


Genetics, epigenetics and pharmaco-(epi)genomics in angiogenesis

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6b 2008
Ian Buysschaert
,,Introduction ,,Angiogenesis is genetically pre-determined ,,Mutations causing vascular anomalies -,Venous anomalies -,Haemangiomas -,The transforming growth factor-ß in vascular anomalies -,Cerebral cavernous malformations ,,Translocations reveal novel angiogenic genes ,,Single nucleotide polymorphisms shape the angio-genome -,SNPs in VEGF and their association with cancer -,SNPs in VEGF pathway genes associated with other diseases -,Genetic variability in VEGFR-2 -,Genetic variability in HIF-1, -,SNPs in VEGFR-1 integrate angiogenesis within the P53 pathway -,Variations in angiogenic genes are linked with neurodegeneration -,Angiogenic factors in genome-wide association studies ,,Copy number variability affects angiogenesis ,,Epigenetic regulation of angiogenesis -,Methylation of anti-angiogenic factors -,Methylation as a second hit event in cancer -,Histone modifications determine angiogenesis ,,Micromanagers of angiogenesis ,,Perspectives Abstract Angiogenesis is controlled by a balance between pro- and anti-angiogenic factors. Studies in mice and human beings have shown that this balance, as well as the general sensitivity of the endothelium to these factors, is genetically pre-determined. In an effort to dissect this genetic basis, different types of genetic variability have emerged: mutations and translocations in angiogenic factors have been linked to several vascular malformations and haemangiomas, whereas SNPs have been associated with complex genetic disorders, such as cancer, neurodegeneration and diabetes. In addition, copy number alterations of angiogenic factors have been reported in several tumours. More recently, epigenetic changes caused by aberrant DNA methylation or histone acetylation of anti-angiogenic molecules have been shown to determine angiogenesis as well. Initial studies also revealed a crucial role for microRNAs in stimulating or reducing angiogenesis. So far, most of these genetic studies have focused on tumour angiogenesis, but future research is expected to improve our understanding of how genetic variants determine angiogenesis in other diseases. Importantly, these genetic insights might also be of important clinical relevance for the use of anti-angiogenic strategies in cancer or macular degeneration. [source]


Epigenetic regulation of the expression of the novel stem cell marker CDCP1 in cancer cells

THE JOURNAL OF PATHOLOGY, Issue 1 2006
J-i Ikeda
Abstract CDCP1 is a novel stem cell marker that is expressed in several types of cancer. The mechanisms by which CDCP1 expression is regulated, and the clinical implications of this marker, have not been clarified. In this report, we examine the epigenetic regulation of CDCP1 expression in cell lines and clinical samples from patients with breast cancer. Many CpG sequences were localized around the transcription initiation site of CDCP1. These CpG motifs were found to be poorly methylated in cell lines with high levels of CDCP1 expression and heavily methylated in cell lines with low levels of CDCP1 expression. The in vitro methylation of CpG sites decreased CDCP1 promoter activity, and the addition of a demethylating reagent restored activity. In 25 breast cancer samples, an inverse correlation was noted between the CDCP1 expression level and the proportion of methylated to non-methylated CpG sites. Tumours with high-level CDCP1 expression showed higher levels of proliferation, as revealed by immunohistochemical detection of the MIB-1 antigen, than tumours with low-level CDCP1 expression. These findings indicate that the expression of CDCP1 is regulated by methylation of its promoter region in tumours. CDCP1 expression may prove to be useful in the further characterization of cancers. Copyright © 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia

CANCER SCIENCE, Issue 2 2010
Vanesa Martín
Wnt5a is a member of the Wnt family of proteins that signals through the non-canonical Wnt/Ca2+pathway to suppress cyclin D1. Deregulation of this pathway has been found in animal models suggesting that it acts as tumour suppressor in acute myeloid leukemia (AML). Although DNA methylation is the main mechanism of regulation of the canonical Wnt pathway in AML, the role of WNT5A abnormalities has never been evaluated in this clinical setting. The methylation status of WNT5A promoter,exon 1 was analyzed by methylation-specific PCR and sequencing in eleven AML-derived cell lines and 252 AML patients. We observed WNT5A hypermethylation in seven cell lines and in 43% (107/252) of AML patients. WNT5A methylation was associated with decreased WNT5A expression (P < 0.001) that was restored after exposure to 5-Aza-2'-deoxycytidine. Moreover, WNT5A hypermethylation correlated with upregulation of CYCLIN D1 expression (P < 0.001). Relapse (15%vs 37%, P < 0.001) and mortality (61%vs 79%, P = 0.004) rates were lower for patients in the non-methylated group. Disease-free survival and overall survival at 6 and 7 years, respectively, were 60% and 27% for unmethylated patients and 20% and 0% for hypermethylated patients (P = 0.0001 and P = 0.04, respectively). Interestingly, significant differences were also observed when the analysis was carried out according to cytogenetic risk groups. We demonstrate that WNT5A, a putative tumor suppressor gene in AML, is silenced by methylation in this disease and that this epigenetic event is associated with upregulation of CYCLIN D1 expression and confers poor prognosis in patients with AML. (Cancer Sci 2009) [source]


Epigenetic regulation in neural stem cell differentiation

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2010
Berry Juliandi
The central nervous system (CNS) is composed of three major cell types , neurons, astrocytes, and oligodendrocytes , which differentiate from common multipotent neural stem cells (NSCs). This differentiation process is regulated spatiotemporally during the course of mammalian development. It is becoming apparent that epigenetic regulation is an important cell-intrinsic program, which can interact with transcription factors and environmental cues to modulate the differentiation of NSCs. This knowledge is important given the potential of NSCs to produce specific CNS cell types that will be beneficial for clinical applications. Here we review recent findings that address molecular mechanisms of epigenetic and transcription factor-mediated regulation that specify NSC fate during CNS development, with a particular focus on the developing mammalian forebrain. [source]


Epigenetic therapy in myelodysplastic syndromes

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 6 2010
Caterina Musolino
Abstract The wide spectrum of clonal hematopoietic disorders that fall under the broad diagnostic category of myelodysplastic syndromes (MDS) consist of a family of bone marrow malignancies , with ineffective, inadequate, and dysplastic hematopoiesis, and with an increased risk of life-threatening infections, bleeding, and progression to acute myeloid leukemia (AML) , that are characterized by a deep heterogeneity on the clinical, biologic and prognostic level. The intrinsic complexity of this group of disorders and the frequent association with one or more comorbidities have limited for many years the number of effective treatment options available: most patients are, indeed, still managed by supportive care measures, with just a minority of them being eligible for allogeneic stem cell transplantation, which is still the only potentially curative modality. In the last two decades, the progressively better understanding of MDS biology has shown how an abnormal epigenetic modulation might play a crucial part in the pathogenesis and in the process of biologic evolution of these disorders. Moreover, pharmacological agents that target the so-called epigenome have shown a significant clinical activity for diverse hematologic malignancies, including MDS. The aim of this review is to highlight recent developments within the context of current knowledge of MDS and its altered epigenetic regulation and to recall the experimental steps that have brought to the clinical development and application of epigenetic modifiers, such as azacytidine and decitabine, trying to explain the biologic rationale for their use in this setting. [source]


Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma

HEPATOLOGY RESEARCH, Issue 5 2007
Li Wang
Aim:, To investigate the roles of epigenetic and genetic alterations of the phosphatase and tensin homologue on chromosome 10 gene (PTEN) in carcinogenesis and the development of hepatocellular carcinomas (HCC). Methods:, A total of 56 cases of HCC tissues and six liver cell lines were studied for the expression of PTEN by immunohistochemistry and Western blot analysis. The PTEN gene mutations in exon5 and exon8 were detected by a combination of single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. Methylation-specific PCR (MSP) was used to identify PTEN promoter methylation. Results:, Of the 56 cases of HCC, 24 (42.9%) expressed the PTEN protein. All surrounding liver tissues of the hepatoma (32 cases) were positive for PTEN. Of the six cell lines, three liver cancer cell lines showed a low expression of PTEN. Five mutations of 56 HCC samples were detected. All of them were located at intron4. No mutation was found in exon5 and exon8. After MSP analysis, we found nine cases of PTEN promoter methylation in 56 specimens (16.1%). However, no CpG island of PTEN was found to be methylated in all six liver cell lines. Conclusion:, The level of PTEN protein was altered in part of the HCC. The downregulation of PTEN expression may not be mainly associated with the PTEN mutations, but partly due to PTEN promoter methylation and other epigenetic regulation. [source]


Allelic imbalance of expression and epigenetic regulation within the alpha-synuclein wild-type and p.Ala53Thr alleles in Parkinson disease,

HUMAN MUTATION, Issue 6 2010
Gerassimos E. Voutsinas
Abstract Genetic alterations in the alpha-synuclein (SNCA) gene have been implicated in Parkinson Disease (PD), including point mutations, gene multiplications, and sequence variations within the promoter. Such alterations may be involved in pathology through structural changes or overexpression of the protein leading to protein aggregation, as well as through impaired gene expression. It is, therefore, of importance to specify the parameters that regulate SNCA expression in its normal and mutated state. We studied the expression of SNCA alleles in a lymphoblastoid cell line and in the blood cells of a patient heterozygous for p.Ala53Thr, the first mutation to be implicated in PD pathogenesis. Here, we provide evidence that: (1) SNCA shows monoallelic expression in this patient, (2) epigenetic silencing of the mutated allele involves histone modifications but not DNA methylation, and (3) steady-state mRNA levels deriving from the normal SNCA allele in this patient exceed those of the two normal SNCA alleles combined, in matching, control individuals. An imbalanced SNCA expression in this patient is thus documented, with silencing of the p.Ala53Thr allele and upregulation of the wild-type-allele. This phenomenon is demonstrated for a first time in the SNCA gene, and may have important implications for PD pathogenesis. Hum Mutat 31:1,7, 2010. © 2010 Wiley-Liss, Inc. [source]


Conservation of DNA methylation in dipteran insects

INSECT MOLECULAR BIOLOGY, Issue 2 2004
J. Marhold
Abstract DNA methylation is a central mechanism of epigenetic regulation. Whereas vertebrate DNA methylation requires at least four different DNA methyltransferases, Drosophila melanogaster only utilizes a single, Dnmt2-like enzyme. This profound difference has raised the question of the evolutionary significance of the Drosophila methylation system. We have now identified Dnmt2-like open reading frames in the genome sequences of Drosophila pseudoobscura and Anopheles gambiae. These genes represent the only candidate DNA methyltransferases in their respective genomes. Consistent with a catalytic activity of Dnmt2 proteins, we could also demonstrate low but significant levels of DNA methylation in genomic DNA from these species. Lastly, we were also able to detect highly conserved Dnmt2-like open reading frames and concomitant DNA methylation in several additional Drosophila species, which suggests that Dnmt2-mediated DNA methylation has been conserved over a considerable evolutionary distance. [source]


Understanding and Modulating Ageing

IUBMB LIFE, Issue 4-5 2005
Suresh IS Rattan
Abstract Ageing is characterized by a progressive accumulation of molecular damage in nucleic acids, proteins and lipids. The inefficiency and failure of maintenance, repair and turnover pathways is the main cause of age-related accumulation of damage. Research in molecular gerontology is aimed at understanding the genetic and epigenetic regulation of survival and maintenance mechanisms at the levels of transcription, post-transcriptional processing, post-translational modifications, and interactions among various gene products. Concurrently, several approaches are being tried and tested to modulate ageing in a wide variety of organisms. The ultimate aim of such studies is to improve the quality of human life in old age and prolong the health-span. Various gerontomodulatory approaches include gene therapy, hormonal supplementation, nutritional modulation and intervention by free radical scavengers and other molecules. A recent approach is that of applying hormesis in ageing research and therapy, which is based on the principle of stimulation of maintenance and repair pathways by repeated exposure to mild stress. A combination of molecular, physiological and psychological modulatory approaches can realize "healthy ageing" as an achievable goal in the not-so-distant future. IUBMB Life, 57: 297-304, 2005 [source]


Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2006
Felix Recillas-Targa
Abstract Genetic and epigenetic regulations are essential mechanisms that ensure proper early and subsequent mammalian programming of diverse cellular processes. These mechanisms affect transcriptional regulation, stem cell determination and cell cycle control, including senescence and aging. It is not surprising that perturbation of the exquisite balance between genetic and epigenetic regulation can lead to diverse diseases, including cancer. Histone covalent modifications and DNA methylation do not explain all epigenetic phenomena. We describe a previously unsuspected epigenetic factor and propose the incorporation of the 11-zinc finger CCCTC-binding factor, known as CTCF as a novel and multifunctional epigenetic regulator. [source]


Epigenetic pre-patterning and dynamics during initial stages of mammalian preimplantation development

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010
Theodore P. Rasmussen
Mammals, like all multicellular organisms, develop from a single cell,the totipotent zygote. During preimplantation development and subsequent development in utero, over 200 distinct cell types are established and integrated into the organ systems and tissues of the developing organism. Much of the field of mammalian developmental biology is devoted to investigation of mechanisms that govern the formation of complete organs and tissues. In contrast to later development, which consumes the vast majority of time associated with development in utero, preimplantation development and germ layer specification occur rapidly. Yet knowledge is limited regarding the regulatory mechanisms that specify the transient, but pluripotent, cellular lineages that form during the initial stages of mammalian development. Gametogenesis and preimplantation development are marked by dramatic and pervasive epigenetic changes rooted in chromatin dynamics. The fundamental mechanisms that specify subsequent cellular lineages of the conceptus are only now becoming understood, and tend to rely relatively heavily upon broad epigenetic mechanisms in addition to master transcription factors. This review considers epigenetic regulation in the very earliest stages of preimplantation development. In addition, recent advances which indicate that some epigenetic coding is imposed during gametogenesis and maintained during preimplantation development are considered. J. Cell. Physiol. 225: 333,336, 2010. © 2010 Wiley-Liss, Inc. [source]


Genetic and epigenetic heterogeneity in cancer: A genome-centric perspective

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009
Henry H.Q. Heng
Genetic and epigenetic heterogeneity (the main form of non-genetic heterogeneity) are key elements in cancer progression and drug resistance, as they provide needed population diversity, complexity, and robustness. Despite drastically increased evidence of multiple levels of heterogeneity in cancer, the general approach has been to eliminate the "noise" of heterogeneity to establish genetic and epigenetic patterns. In particular, the appreciation of new types of epigenetic regulation like non-coding RNA, have led to the hope of solving the mystery of cancer that the current genetic theories seem to be unable to achieve. In this mini-review, we have briefly analyzed a number of mis-conceptions regarding cancer heterogeneity, followed by the re-evaluation of cancer heterogeneity within a framework of the genome-centric concept of evolution. The analysis of the relationship between gene, epigenetic and genome level heterogeneity, and the challenges of measuring heterogeneity among multiple levels have been discussed. Further, we propose that measuring genome level heterogeneity represents an effective strategy in the study of cancer and other types of complex diseases, as emphasis on the pattern of system evolution rather than specific pathways provides a global and synthetic approach. Compared to the degree of heterogeneity, individual molecular pathways will have limited predictability during stochastic cancer evolution where genome dynamics (reflected by karyotypic heterogeneity) will dominate. J. Cell. Physiol. 220: 538,547, 2009. © 2009 Wiley-Liss, Inc. [source]


Sexual Reproduction in Higher Plants I: Fertilization and the Initiation of Zygotic Program

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 7 2008
Yong-Feng Fan
Abstract Sexual plant reproduction is a critical developmental step in the life cycle of higher plants, to allow maternal and paternal genes to be transmitted in a highly regulated manner to the next generation. During evolution, a whole set of signal transduction machinery is developed by plants to ensure an error-free recognition between male and female gametes and initiation of zygotic program. In the past few years, the molecular machineries underlying this biological process have been elucidated, particularly on the importance of synergid cells in pollen tube guidance, the Ca++ spike as the immediate response of fertilization and the epigenetic regulation of parental gene expressions in early zygotic embryogenesis. This review outlines the most recent development in this area. [source]


Emerging Role of Epigenetics in the Actions of Alcohol

ALCOHOLISM, Issue 9 2008
Shivendra D. Shukla
This review deals with the recent developments on the epigenetic effects of ethanol. A large body of data have come from studies in liver and in neuronal systems and involve post-translational modifications in histones and methylations in DNA. Ethanol causes site selective acetylation, methylation, and phosphorylation in histone. With respect to methylations the methyl group donating system involving S-adenosyl methionine appears to play a central role. There is contrasting effect of acetylation versus methylation on the same site of histone, as it relates to the transcriptional activation. Epigenetic memory also appears to correlate with liver pathology and Mallory body formation. Experimental evidence supports transcriptional regulation of genes in the CNS by DNA methylations. These studies are contributing towards a better understanding of a novel epigenetic regulation of gene expression in the context of alcohol. The critical steps and the enzymes (e.g., histone acetyltransferase, histone deacetylase, DNA methyltransferase) responsible for the epigenetic modifications are prime targets for intense investigation. The emerging data are also beginning to offer novel insight towards defining the molecular actions of ethanol and may contribute to potential therapeutic targets at the nucleosomal level. These epigenetic studies have opened up a new avenue of investigation in the alcohol field. [source]


Characterization of the methylation patterns of MS4A2 in atopic cases and controls

ALLERGY, Issue 3 2010
M. A. R. Ferreira
To cite this article: Ferreira MAR, Oates NA, van Vliet J, Zhao ZZ, Ehrich M, Martin NG, Montgomery GW, Whitelaw E, Duffy DL. Characterization of the methylation patterns of MS4A2 in atopic cases and controls. Allergy 2010; 65: 333,337. Abstract Background:, It is largely unknown whether epigenetic modifications of key genes may contribute to the reported maternal effects in atopy. The aim of this study was to characterize the methylation patterns of the membrane-spanning 4-domains, subfamily A, member 2 gene (MS4A2) (,-chain of the IgE high-affinity receptor), a key gene in the allergic cascade. Methods:, Mass spectrometry and bisulphite sequencing were used to measure the methylation of two potential substrates for epigenetic regulation of MS4A2, namely a predicted promoter and a CpG-rich AluSp repeat. Methylation was measured in DNA extracted from peripheral blood lymphocytes of 38 atopic cases and 37 controls. Cases were positive for atopy, asthma, bronchial hyper-responsiveness and had high IgE levels. Both parents of eight atopic cases were also tested. Results:, The AluSp element was highly methylated across all individuals (mean 0.92, range 0.87,0.94), a pattern inconsistent with classical imprinting. Variation in methylation at this locus was not associated with age, sex, daily steroid use or atopic status, and there were no differences in methylation between mothers and fathers of atopic cases. Bisulphite sequencing analysis of the promoter region showed that it was also not imprinted, and there was no evidence for allele-specific methylation, but we were unable to test for association with atopy status. Conclusions:, Methylation levels at the AluSp repeat analysed in MS4A2 were inconsistent with classical imprinting mechanisms and did not associate with atopy status. The promoter region was less methylated but further analysis of this region in larger cohorts is warranted to investigate its role in allergic disease. [source]


Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease

ALLERGY, Issue 1 2010
D. J. Martino
Abstract Epigenetic mechanisms provide new insights into how environmental changes may mediate the increasing propensity for complex immune diseases such as allergic disease. There is now strong evidence that early environmental exposures play a key role in activating or silencing genes by altering DNA and histone methylation, histone acetylation and chromatin structure. These modifications determine the degree of DNA compaction and accessibility for gene transcription, altering gene expression, phenotype and disease susceptibility. While there is already evidence that a number of early environmental exposures are associated with an increased risk of allergic disease, several new studies indicate in utero microbial and dietary exposures can modify gene expression and allergic disease propensity through epigenetic modification. This review explores the evidence that immune development is under clear epigenetic regulation, including the pattern of T helper (Th)1 and Th2 cell differentiation, regulatory T cell differentiation, and more recently, Th17 development. It also considers the mechanisms of epigenetic regulation and early immune defects in allergy prone neonates. The inherent plasticity conferred by epigenetic mechanisms clearly also provides opportunities for environmental strategies that can re-programme gene expression for disease prevention. Identifying genes that are differentially silenced or activated in relation to subsequent disease will not only assist in identifying causal pathways, but may also help identify the contributing environmental factors. [source]


A novel study design to investigate the early-life origins of asthma in children (SAGE study)

ALLERGY, Issue 8 2009
A. L. Kozyrskyj
This is a description of the Study of Asthma, Genes and the Environment (SAGE), a novel birth cohort created from provincial healthcare administrative records. It is a general population-based cohort, composed of children at high and low risk for asthma, living in urban and rural environments in Manitoba, Canada. The SAGE study captures the complete longitudinal healthcare records of children born in 1995 and contains detailed information on early-life exposures, such as antibiotic utilization and immunization, in relationship to the development of asthma. Nested within the birth cohort is a case-control study, which was created to collect information on home environmental exposures from detailed surveys and home dust sampling, to confirm asthma status in children and use this data to validate healthcare database measures of asthma, to determine differences in immune system responsiveness to innate and adaptive immune stimuli in asthma, to genotype children for genes likely associated with the development of asthma and to study the epigenetic regulation of pre-established protective vs allergic immune responses. The SAGE study is a multidisciplinary collaboration of researchers from pediatric allergy, population health, immunology, and genetic and environmental epidemiology. As such, it serves as a fertile, interdisciplinary training ground for graduate students, and postdoctoral and clinician fellows. [source]


Progressive up-regulation of genes encoding DNA methyltransferases in the colorectal adenoma-carcinoma sequence

MOLECULAR CARCINOGENESIS, Issue 9 2007
Wolfgang M. Schmidt
Abstract Epigenetic silencing is a prominent feature of cancer. Here, we investigated the expression of DNA demethylase and three DNA methyltransferases during colorectal tumorigenesis comparing the genes encoding DNA methyltransferases 1 (DNMT1), 3A, and 3B (DNMT3A and DNMT3B) with methyl-CpG binding domain protein 2 (MBD2), recently described as the only active DNA demethylase. Total RNA isolated from normal colonic mucosa (n,=,24), benign adenomas (n,=,18), and malignant colorectal carcinomas (n,=,32) was analyzed by reverse transcriptase-PCR with subsequent quantification by capillary gel electrophoresis. In contrast to MBD2, expression of DNMT1 and DNMT3A increased in parallel to the degree of dysplasia, with significant overexpression in the malignant lesion when compared with mucosa or with benign lesions (DNMT1). Pairwise comparisons between tumors and matched, adjacent healthy mucosa tissue (n,=,13) revealed that expression of all three genes encoding DNA methyltransferases increased by two- to three-fold. Our data suggest a relevant role of the DNA methyltransferases during colorectal tumorigenesis. This increase is not counterbalanced by enhanced expression of the demethylating component MBD2. As a consequence, epigenetic regulation in the adenoma-carcinoma sequence may be driven by increased methylating activity rather than suppressed demethylation. © 2007 Wiley-Liss, Inc. [source]


MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce

NEW PHYTOLOGIST, Issue 4 2010
Igor A. Yakovlev
Summary ,Norway spruce expresses a temperature-dependent epigenetic memory from the time of embryo development, which thereafter influences the timing bud phenology. MicroRNAs (miRNAs)are endogenous small RNAs, exerting epigenetic gene regulatory impacts. We have tested for their presence and differential expression. ,We prepared concatemerized small RNA libraries from seedlings of two full-sib families, originated from seeds developed in a cold and warm environment. One family expressed distinct epigenetic effects while the other not. We used available plant miRNA query sequences to search for conserved miRNAs and from the sequencing we found novel ones; the miRNAs were monitored using relative real time-PCR. ,Sequencing identified 24 novel and four conserved miRNAs. Further screening of the conserved miRNAs confirmed the presence of 16 additional miRNAs. Most of the miRNAs were targeted to unknown genes. The expression of seven conserved and nine novel miRNAs showed significant differences in transcript levels in the full-sib family showing distinct epigenetic difference in bud set, but not in the nonresponding full-sib family. Putative miRNA targets were studied. ,Norway spruce contains a set of conserved miRNAs as well as a large proportion of novel nonconserved miRNAs. The differentially expression of specific miRNAs indicate their putative participation in the epigenetic regulation. [source]


Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment

PHYSIOLOGIA PLANTARUM, Issue 3 2009
Kyproula Demetriou
Epigenetic phenomena have been associated with modifications of chromatin structure. These are achieved, in part, by histone post-translational modifications including acetylations and deacetylations, the later being catalyzed by histone deacetylaces (HDACs). Eukaryotic HDACs are grouped into three major families, RPD3/HDA1, SIR2 and the plant-specific HD2. HDAC genes have been analyzed from model plants such as Arabidopsis, rice and maize and have been shown to be involved in various cellular processes including seed development, vegetative and reproductive growth and responses to abiotic and biotic stress, but reports on HDACs from other crops are limited. In this work two full-length cDNAs (HvHDAC2-1 and HvHDAC2-2) encoding two members of the plant-specific HD2 family, respectively, were isolated and characterized from barley (Hordeum vulgare), an agronomically important cereal crop. HvHDAC2-1 and HvHDAC2-2 were mapped on barley chromosomes 1H and 3H, respectively, which could prove useful in developing markers for marker-assisted selection in breeding programs. Expression analysis of the barley HD2 genes demonstrated that they are expressed in all tissues and seed developmental stages examined. Significant differences were observed among tissues and seed stages, and between cultivars with varying seed size, suggesting an association of these genes with seed development. Furthermore, the HD2 genes from barley were found to respond to treatments with plant stress-related hormones such as jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA) implying an association of these genes with plant resistance to biotic and abiotic stress. The expression pattern of HD2 genes suggests a possible role for these genes in the epigenetic regulation of seed development and stress response. [source]


Epigenetic regulation of the expression of the novel stem cell marker CDCP1 in cancer cells

THE JOURNAL OF PATHOLOGY, Issue 1 2006
J-i Ikeda
Abstract CDCP1 is a novel stem cell marker that is expressed in several types of cancer. The mechanisms by which CDCP1 expression is regulated, and the clinical implications of this marker, have not been clarified. In this report, we examine the epigenetic regulation of CDCP1 expression in cell lines and clinical samples from patients with breast cancer. Many CpG sequences were localized around the transcription initiation site of CDCP1. These CpG motifs were found to be poorly methylated in cell lines with high levels of CDCP1 expression and heavily methylated in cell lines with low levels of CDCP1 expression. The in vitro methylation of CpG sites decreased CDCP1 promoter activity, and the addition of a demethylating reagent restored activity. In 25 breast cancer samples, an inverse correlation was noted between the CDCP1 expression level and the proportion of methylated to non-methylated CpG sites. Tumours with high-level CDCP1 expression showed higher levels of proliferation, as revealed by immunohistochemical detection of the MIB-1 antigen, than tumours with low-level CDCP1 expression. These findings indicate that the expression of CDCP1 is regulated by methylation of its promoter region in tumours. CDCP1 expression may prove to be useful in the further characterization of cancers. Copyright © 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


REVIEW ARTICLE: Epigenetics in the Placenta

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 2 2009
Matthew A. Maccani
Epigenetics is focused on understanding the control of gene expression beyond what is encoded in the sequence of DNA. Central to growing interest in the field is the hope that more can be learned about the epigenetic regulatory mechanisms underlying processes of human development and disease. Researchers have begun to examine epigenetic alterations , such as changes in promoter DNA methylation, genomic imprinting, and expression of miRNA , to learn more about epigenetic regulation in the placenta, an organ whose proper development and function are crucial to the health, growth, and survival of the developing fetus. A number of studies are now making important links between alterations to appropriate epigenetic regulation in the placenta and diseases of gestation and early life. In addition, these studies are adding important insight into our understanding of trophoblast biology and differentiation as well as placental immunology. Examining epigenetic alterations in the placenta will prove especially important in the search for biomarkers of exposure, pathology, and disease risk and can provide critical insights into the biology of development and pathogenesis of disease. Thus, epigenetic alterations may aid in disease diagnosis and prognosis as well as in targeting new treatment and prevention strategies. [source]


Transposable elements and an epigenetic basis for punctuated equilibria

BIOESSAYS, Issue 7 2009
David W. Zeh
Abstract Evolution is frequently concentrated in bursts of rapid morphological change and speciation followed by long-term stasis. We propose that this pattern of punctuated equilibria results from an evolutionary tug-of-war between host genomes and transposable elements (TEs) mediated through the epigenome. According to this hypothesis, epigenetic regulatory mechanisms (RNA interference, DNA methylation and histone modifications) maintain stasis by suppressing TE mobilization. However, physiological stress, induced by climate change or invasion of new habitats, disrupts epigenetic regulation and unleashes TEs. With their capacity to drive non-adaptive host evolution, mobilized TEs can restructure the genome and displace populations from adaptive peaks, thus providing an escape from stasis and generating genetic innovations required for rapid diversification. This "epi-transposon hypothesis" can not only explain macroevolutionary tempo and mode, but may also resolve other long-standing controversies, such as Wright's shifting balance theory, Mayr's peripheral isolates model, and McClintock's view of genome restructuring as an adaptive response to challenge. [source]


Gene silencing of MIR22 in acute lymphoblastic leukaemia involves histone modifications independent of promoter DNA methylation

BRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2010
Xiaoqing Li
Summary Aberrant epigenetic regulation has recently been implicated in the downregulation of tumour suppressor microRNAs (miRNAs). Histone modification and DNA methylation can have different roles in gene silencing in cancer. To investigate whether histone modifications would contribute to the dysregulation of miRNAs in acute lymphoblastic leukaemia (ALL), the effect of a histone deacetylase inhibitor, trichostatin A (TSA), on miRNA expression profile was analysed by microarray assay in a precursor B-cell ALL cell line NALM-6. A total of 10 miRNAs were downregulated and 31 were upregulated significantly following TSA treatment. Among TSA-upregulated miRNAs, MIR22 is an extronic miRNA and resides in the second exon of the non-coding transcript MGC14376. Upregulation of MIR22 transcription was found in both NALM-6 cells and primary human ALL malignant cells treated with TSA. Whereas a CpG island was identified within the promoter element of MIR22, no promoter DNA methylation was detected in these cells. In contrast, accumulation of the repressive histone marker H3K27 trimethylation (H3K27triM) was indentified around the transcriptional start point of the gene, which was reduced by TSA treatment. Thus, accumulation of H3K27triM independent of promoter DNA methylation may be a novel epigenetic mechanism for MIR22 silencing in ALL. [source]


Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2006
Felix Recillas-Targa
Abstract Genetic and epigenetic regulations are essential mechanisms that ensure proper early and subsequent mammalian programming of diverse cellular processes. These mechanisms affect transcriptional regulation, stem cell determination and cell cycle control, including senescence and aging. It is not surprising that perturbation of the exquisite balance between genetic and epigenetic regulation can lead to diverse diseases, including cancer. Histone covalent modifications and DNA methylation do not explain all epigenetic phenomena. We describe a previously unsuspected epigenetic factor and propose the incorporation of the 11-zinc finger CCCTC-binding factor, known as CTCF as a novel and multifunctional epigenetic regulator. [source]