Epidermal Melanocytes (epidermal + melanocyte)

Distribution by Scientific Domains


Selected Abstracts


Morphology of Cultured Human Epidermal Melanocytes Observed by Atomic Force Microscopy

PIGMENT CELL & MELANOMA RESEARCH, Issue 1 2004
Ru-zhi Zhang
The objective of this study was to image the surface structure of cultured human epidermal melanocytes using atomic force microscopy (AFM). Epidermis obtained from human foreskins was treated with 0.5% dispase. Cell suspensions of the epidermis were prepared and seeded in six-well plates, in which sheets of mica had been placed. Samples for AFM were fixed on mica and scanning AFM images were captured by contacting and tapping modes operated under normal atmospheric pressure and temperature. Human epidermal melanocytes exhibited rounded, oval, triangular or quadrangular perikarya from which eight to 10 thick dendrites arose. These dendrites first bifurcated near the soma and then divided profusely into daughter branches, which spread out in all directions. We observed string-like long thin projections, growth cones and shorter thicker projections, which arose from the dendritic shafts, in which groups of melanosomes were arrayed. In addition to such structures, the most striking feature was the presence of filopodia arising from the melanocyte dendrite tips and the melanocyte cell body, many of which contained melanosomes. The termini of dendrites formed unbranched terminal protrusions (approximately 1500,2000 nm wide) consisting of two to three melanosomes wrapped in an arc, with their filopodia extending outwards. The tips of these structures also appeared to be squeezed and finally pinched off by the melanocyte to form a pouch filled with numerous melanosomes. We conclude that secondary and tertiary branches and subordinate branches might take part in transferring melanosomes into keratinocytes in addition to the transfer through the tips of the dendritic shafts. The melanin granules were expelled by exocytosis. [source]


Prostaglandin D2 production in FM55 melanoma cells is regulated by ,-melanocyte-stimulating hormone and is not related to melanin production

EXPERIMENTAL DERMATOLOGY, Issue 8 2010
Mojgan Masoodi
Please cite this paper as: Prostaglandin D2 production in FM55 melanoma cells is regulated by ,-melanocyte-stimulating hormone and is not related to melanin production. Experimental Dermatology 2010; 19: 751,753. Abstract:, This study shows that prostaglandins in human FM55 melanoma cells and epidermal melanocytes are produced by COX-1. Prostaglandin production in FM55 melanoma cells was unrelated to that of melanin suggesting that the two processes can occur independently. ,-Melanocyte-stimulating hormone, which had no effect on melanin production in FM55 cells, stimulated PGD2 production in these cells without affecting PGE2. While cAMP pathways may be involved in regulating PGD2 production, our results suggest that ,-MSH acts independently of cAMP, possibly by regulating the activity of lipocalin-type PGD synthase. This ,-MSH-mediated effect may be associated with its role as an immune modulator. [source]


Modulations of nerve growth factor and Bcl-2 in ultraviolet-irradiated human epidermis

JOURNAL OF CUTANEOUS PATHOLOGY, Issue 6 2003
Catherine M. Stefanato
Background:, Ultraviolet (UV) irradiation to the skin causes apoptosis of keratinocytes. Melanocytes are more resistant to UV-induced apoptosis, due, in part, to high levels of antiapoptotic proteins such as Bcl-2. In vitro studies have shown that nerve growth factor (NGF), a neurotrophic polypeptide, is produced by keratinocytes and exerts a protective role for melanocytes by upregulating Bcl-2. The purpose of this study was to determine NGF and Bcl-2 modulations in UV-irradiated human skin. Methods:, Nine volunteers were irradiated with two minimal erythema doses using solar-simulated UV irradiation. Seventy-two hours post irradiation, skin biopsies were obtained from irradiated and sun-protected skin. The skin specimens were stained with anti-tyrosinase-related protein-1 monoclonal antibody IgG2a (Mel-5), anti-Bcl-2 (monoclonal antibody IgG-kappa), and with anti-NGF (polyclonal antibody IgG). Results:, NGF staining was identified within the cytoplasm of epidermal melanocytes, similar to the staining observed for TRP-1 and Bcl-2. While no significant difference in the number of TRP-1- and Bcl-2-positive melanocytes was observed between irradiated and non-irradiated skin within 72 h, the number of NGF-positive melanocytes decreased significantly, 72 h after UV irradiation (p < 0.024). NGF was also identified within keratinocytes, and while non-irradiated skin exhibited cytoplasmic NGF staining throughout the epidermis, NGF staining was reduced in the lower epidermal layers after UV irradiation. Conclusions:, This is the first in vivo study showing NGF to be present in melanocytes, as well as showing modulations of NGF and Bcl-2 in melanocytes, following solar-simulated UV irradiation. [source]


Pheomelanin Production in the Epidermis from Newborn Agouti Mice is Induced by the Expression of the Agouti Gene in the Dermis

PIGMENT CELL & MELANOMA RESEARCH, Issue 5 2004
Tomohisa Hirobe
The present study was designed to clarify the role of the agouti gene in the regulation of the proliferation and differentiation of mouse epidermal melanocytes using serum-free primary culture of epidermal melanocytes from 0.5-d-old black (a/a; C57BL/10JHir) mice and congenic, agouti (A/A; C57BL/10JHir- A/A) mice. There was no significant difference in the proliferation or differentiation of melanocytes between a/a and A/A mice. However, the content of pheomelanin in culture media from A/A melanocytes was increased by l -tyrosine compared with a/a melanocytes. In addition, the content of the pheomelanin precursor, 5- S -cysteinyldopa, in culture media from A/A melanocytes was dramatically increased by l -tyrosine. Moreover, pheomelanin content in the epidermis from 3.5- and 5.5-d-old A/A mice was much higher than in a/a mice. Analysis of the A gene using reverse transcription-polymerase chain reaction revealed that cultured keratinocytes and melanocytes do not express the A gene. Moreover, the A gene was expressed in the A/A dermis of 0.5-, 3.5- and 5.5-d-old mice, but not in the a/a dermis nor in the A/A or a/a epidermis. These results suggest that A/A epidermal melanoblasts are influenced by the A gene from the dermis of neonatal mice, and are capable of synthesizing pheomelanin in the culture. Pheomelanin production in the epidermis from 3.5- and 5.5-d-old A/A mice may be induced by the expression of the agouti gene in the dermis. [source]


Morphology of Cultured Human Epidermal Melanocytes Observed by Atomic Force Microscopy

PIGMENT CELL & MELANOMA RESEARCH, Issue 1 2004
Ru-zhi Zhang
The objective of this study was to image the surface structure of cultured human epidermal melanocytes using atomic force microscopy (AFM). Epidermis obtained from human foreskins was treated with 0.5% dispase. Cell suspensions of the epidermis were prepared and seeded in six-well plates, in which sheets of mica had been placed. Samples for AFM were fixed on mica and scanning AFM images were captured by contacting and tapping modes operated under normal atmospheric pressure and temperature. Human epidermal melanocytes exhibited rounded, oval, triangular or quadrangular perikarya from which eight to 10 thick dendrites arose. These dendrites first bifurcated near the soma and then divided profusely into daughter branches, which spread out in all directions. We observed string-like long thin projections, growth cones and shorter thicker projections, which arose from the dendritic shafts, in which groups of melanosomes were arrayed. In addition to such structures, the most striking feature was the presence of filopodia arising from the melanocyte dendrite tips and the melanocyte cell body, many of which contained melanosomes. The termini of dendrites formed unbranched terminal protrusions (approximately 1500,2000 nm wide) consisting of two to three melanosomes wrapped in an arc, with their filopodia extending outwards. The tips of these structures also appeared to be squeezed and finally pinched off by the melanocyte to form a pouch filled with numerous melanosomes. We conclude that secondary and tertiary branches and subordinate branches might take part in transferring melanosomes into keratinocytes in addition to the transfer through the tips of the dendritic shafts. The melanin granules were expelled by exocytosis. [source]


Quercetin Enhances Melanogenesis By Increasing the Activity and Synthesis of Tyrosinase in Human Melanoma Cells and in Normal Human Melanocytes

PIGMENT CELL & MELANOMA RESEARCH, Issue 1 2004
Hidetaka Nagata
Quercetin (3,3,,4,,5,7-pentahydroxyflavone) is a diphenyl propanoid widely distributed in edible plants. In this study, we examined the effect of quercetin on melanogenesis in human HMVII melanoma cells and in normal human epidermal melanocytes (NHEM) in the absence of ultraviolet radiation. Upon the addition of quercetin to the culture medium, the melanin content in melanoma cells (HMVII) increased remarkably in time- and dose-dependent manners. In addition, quercetin induced melanogenesis in cultured NHEM. As compared with controls, melanin content was increased about sevenfold by treatment with 20 ,M (HMVII) or 1 ,M (NHEM) quercetin for 7 d. Tyrosinase activity was also increased, to 61.8-fold higher than the control. The expression of tyrosinase protein was slightly increased by the addition of quercetin. However, quercetin did not affect the expression of tyrosinase mRNA. Tyrosinase activation by quercetin was blocked by actinomycin-D or by cycloheximide demonstrating that its actions in stimulating melanogenesis may involve both transcriptional and translational events. Tyrosinase activity was increased dramatically whereas the level of melanogenic inhibitor was remarkably decreased following quercetin treatment. Taken together, these results demonstrate that in human melanoma cells and in NHEM, quercetin stimulates melanogenesis by increasing tyrosinase activity and decreasing other factors such as melanogenic inhibitors. [source]


Depigmenting Action of Phenylhydroquinone, an o -Phenylphenol Metabolite, on the Skin of JY-4 Black Guinea-Pigs

PIGMENT CELL & MELANOMA RESEARCH, Issue 6 2002
Kuniaki Tayama
The effects of o -phenylphenol (OPP) and its metabolite, phenylhydroquinone (PHQ) on the skin of JY-4 black guinea-pigs were studied. Topical application of 1 or 5% PHQ on the black skin of the back caused marked depigmentation and hypopigmentation of the skin after 5 weeks, whereas OPP applied at the same concentrations had little effect. Depigmented skin had an increased L* (lightness) value in the CIE-L*a*b* color system. This corresponded with a decreased number of melanocytes and melanosomes in the melanocytes and keratinocytes, the disruption of melanosomes in the melanocytes, and destruction of the membranous organelles of the melanocytes. These morphological and numerical changes in epidermal melanocytes indicate that selective melanocyte toxicity occurred. Furthermore, application of PHQ to the skin of white guinea-pigs caused skin irritation, as shown by a colorimetric increase in a* value (redness) and by histological observation of inflammation. This study confirmed that OPP, which is a reported depigmenter, has little depigmenting action, while its metabolite, PHQ, is a potent depigmenter preferentially affecting melanocytes. [source]


Keratin 16 expression in epidermal melanocytes

BRITISH JOURNAL OF DERMATOLOGY, Issue 1 2010
J. Bhawan
No abstract is available for this article. [source]


Keratin 16 expression in epidermal melanocytes: reply from authors

BRITISH JOURNAL OF DERMATOLOGY, Issue 1 2010
Y. Ramot
No abstract is available for this article. [source]