Environmental Disturbances (environmental + disturbance)

Distribution by Scientific Domains


Selected Abstracts


Impact of Environmental Disturbance on the Stability and Benefits of Individual Status within Dominance Hierarchies

ETHOLOGY, Issue 5 2006
Lynne U. Sneddon
Changes in environmental conditions affect social interactions and thus may modify an individual's competitive ability within a social group. We subjected three-spined sticklebacks, Gasterosteus aculeatus, housed in groups of four individuals, to environmental perturbations to assess the impact on dominance hierarchy stability. Hierarchy stability decreased during increased turbulence or lowered water levels (,simulated drought') whereas control hierarchies became more stable in a constant environment. The dominant individual either became more aggressive and remained dominant during the environmental manipulation or was usurped by a lower rank member. Only simulated drought affected rates of aggression where levels of aggression were higher after the water level was dropped which may be the result of an increased encounter rate in these conditions. When there were large size differences between the group members, the dominant individual performed the greatest amount of aggression and ate the largest proportion of food and there was little aggressive behaviour from the lower ranks. In groups of similar-sized individuals, aggression was much higher. The benefit of being dominant was to gain weight over the experimental period whereas ranks 2 and 3 lost weight. The lowest rank, 4, actually gained weight over the experimental period. This study suggests that it would benefit an individual to be dominant, highly aggressive and gain weight or be submissive, avoid aggressive interactions and, by sneakily obtaining access to food, also gain weight. Altering environmental conditions has a profound effect on social behaviour in this study. [source]


A Study of Industry Evolution in the Face of Major Environmental Disturbances: Group and Firm Strategic Behaviour of Spanish Banks, 1983,1997,

BRITISH JOURNAL OF MANAGEMENT, Issue 3 2004
JoséÁngel Zúñiga-Vicente
This paper examines the story of the evolution of a specific industry through the application of dynamic strategic group analysis. In particular, we analyse the relationship between major environmental disturbances and changes that have occurred over time in the competitive structure of the industry regarding two closely related central questions. First, the way in which these environmental transformations have influenced group patterns and stability, and second, the way in which such environmental disturbances has affected the strategic positioning of individual firms. We resort to alternative theoretical perspectives in an attempt to answer both questions. The empirical setting is the population of Spanish banks over the period 1983,1997. We make use of a new grouping algorithm , the Model-based Clustering or MCLUST , which may be enormously fruitful in future empirical works on strategic groups. This method allows researchers to obtain the optimal number of groupings over time in a much more objective way than the cluster techniques used until now. Compared to previous dynamic studies that only consider the largest firms, our research illustrates how a richer analysis of an industry dynamics can be obtained by using a dynamic analysis of strategic groups. Our results show that while there have been no industry-wide identical groupings year to year, there is an important strategic stability at group and firm-level punctuated by a high degree of strategic instability at times of major environmental disturbances. [source]


A practical protocol to assess impacts of unplanned disturbance: a case study in Tuggerah Lakes Estuary, NSW

ECOLOGICAL MANAGEMENT & RESTORATION, Issue 2003
A. J. Underwood
Summary Environmental managers are often confronted with unplanned or accidental disturbances that may lead to environmental impacts. Procedures for detecting or measuring the size of such impacts are complicated because of the lack of data available before the disturbance and because of the intrinsic variability of most natural measures. Here, a protocol for detecting impacts is illustrated for single-measure variables (numbers of individual species) and multivariate measures (relative abundances of invertebrates in assemblages). The present paper describes a case concerning drainage of acidified water into an estuary due to construction of a drainage channel in an area of wetland for which there had been no prior investigations (i.e. no ,before' data). The spatial extent of any impact was also unknowable. Sampling was, therefore, designed to allow for impacts of only a few tens of metres (using control sites 50 m from the mouth of the channel) and impacts covering much larger areas (500 m and 1 km from the mouth of the channel). Invertebrates in the mud around the channel and in control sites were sampled in replicated cores and the amount of seagrass in each core was weighed. Average abundances of invertebrate animals and weights of seagrass were compared, as was variation among samples in potentially impacted and control sites (using univariate analyses of variance). Sets of species were compared using multivariate methods to test the hypothesis that there was an impact at one of the scales examined. In fact, there was no evidence for any sort of impact on the fauna or seagrasses; the disturbance was a short-term pulse without any obvious or sustained ecological response. One consequence of the study was that the local council was able to demonstrate no impact requiring remediation and no penalties were imposed for the unapproved construction of the channel. The implications of this type of study after an environmental disturbance are discussed. The present study identifies the need for clear definition of relevant hypotheses, coupled with rigorous planning of sampling and analyses, so that reliable answers are available to regulators and managers. [source]


Dominance of a clonal green sulfur bacterial population in a stratified lake

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2009
Lea H. Gregersen
Abstract For many years, the chemocline of the meromictic Lake Cadagno, Switzerland, was dominated by purple sulfur bacteria. However, following a major community shift in recent years, green sulfur bacteria (GSB) have come to dominate. We investigated this community by performing microbial diversity surveys using FISH cell counting and population multilocus sequence typing [clone library sequence analysis of the small subunit (SSU) rRNA locus and two loci involved in photosynthesis in GSB: fmoA and csmCA]. All bacterial populations clearly stratified according to water column chemistry. The GSB population peaked in the chemocline (c. 8 × 106 GSB cells mL,1) and constituted about 50% of all cells in the anoxic zones of the water column. At least 99.5% of these GSB cells had SSU rRNA, fmoA, and csmCA sequences essentially identical to that of the previously isolated and genome-sequenced GSB Chlorobium clathratiforme strain BU-1 (DSM 5477). This ribotype was not detected in Lake Cadagno before the bloom of GSB. These observations suggest that the C. clathratiforme population that has stabilized in Lake Cadagno is clonal. We speculate that such a clonal bloom could be caused by environmental disturbance, mutational adaptation, or invasion. [source]


Comparison of frog assemblages between urban and non-urban habitats in the upper Blue Mountains of Australia

FRESHWATER BIOLOGY, Issue 12 2008
ALAN LANE
Summary 1. World wide, and in Australia, many frog populations have declined over the last two decades. The present study was undertaken to determine whether urbanization has affected frog diversity and abundance. 2. Five urban sites were paired with non-urban sites. Urban sites were in Katoomba and Blackheath, and were subject to physical environmental disturbance and impacted by storm water pollution due to urban runoff. Non-urban sites were in the Blue Mountains National Park and were effectively subject to no human impact. 3. Water quality at urban sites was typical of sites polluted with sewage, while non-urban sites exhibited water quality typical of ,pristine' natural bushland streams. 4. Six species were found at urban sites (Litoria peronii, Litoria dentata, Litoria verreauxii, Limnodynastes dumerilii, Limnodynastes peronii, Crinia signifera), with up to four species present at a site. Only one species (C. signifera) was recorded at non-urban sites, and frogs were absent from most non-urban sites. 5. The situation in non-urban sites mirrors the trend of decline observed in other montane regions. Surprisingly, frog abundance and diversity were higher in urban habitats, running counter to this trend. 6. We hypothesize that the salts, detergents and other chemicals in urban wastewaters provide frogs with a level of protection against disease, particularly chytridiomycosis. [source]


A comparison of different pre-treatment procedures for reducing heteroscedasticity and other irrelevant features in data prior to modelling of benthic count profiles

JOURNAL OF CHEMOMETRICS, Issue 7-9 2007
Geir Rune Flåten
Abstract Challenges related to quantifying environmental disturbance biologically from benthic count profiles by using the Community Disturbance Index (CDI) approach are assessed. A pre-treatment framework incorporating removal of irrelevant features, scaling and converting transformations is proposed. Within this framework the characteristics of benthic count data are discussed and possible consequences for the CDI calculations are shown. It is established that the benthic count data need to be corrected for heteroscedasticity while scaling is found to be unnecessary for the CDI calculations. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Decadal changes (1996,2006) in coastal ecosystems of the Chagos archipelago determined from rapid assessment

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 6 2009
Andrew R.G. Price
Abstract 1.The atolls and islands comprising Chagos are a biodiversity hotspot of global conservation significance in a remote part of the central Indian Ocean. 2.This study examines the condition of the archipelago's coastal ecosystems by rapid environmental assessment at 21 sites/islands, which were also investigated a decade earlier using the same methodology. Major changes in ecosystem structure and environmental disturbance were determined. 3.Coral fish abundance was significantly lower in 2006 than 1996. Decrease in the physical structural complexity of the reefs, as a result of coral bleaching and mortality induced by the 1998 warming event, may have been a contributing factor. 4.Evidence of collecting/fishing was significantly greater in 2006 than 1996. This is attributed mainly to an illegal fishery for holothurians (sea cucumbers), which has expanded over recent years and now exerts substantial pressure on the resource. The significant decline observed in beach wood, a readily accessible fuel for fishing camps, is consistent with this. 5.Solid waste on islands was high (median 2 to 20 items m,1 beach) in both 1996 and 2006. Potentially harmful biological impacts, determined from other studies, include entanglement, toxic effects and provision of transport for invasives or other ,hitchhiker' species. 6.Significantly higher bird abundances were recorded in protected areas than ,unprotected' areas, attributed mainly to absence of predation by rats. 7.Rapid assessment augments more comprehensive ecosystem investigations. It provides a valuable snapshot of environmental conditions based upon a broad suite of features (ecosystems and disturbances) determined, concurrently, within the same site inspection quadrats and using the same scale of assessment. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Biodiversity recovery during rainforest reforestation as indicated by rapid assessment of epigaeic ants in tropical and subtropical Australia

AUSTRAL ECOLOGY, Issue 4 2009
SCOTT D. PIPER
Abstract There is growing interest in the potential for reforestation to assist the recovery of rainforest biodiversity. There is also a need to identify taxonomically tractable groups for use as cost-effective indicators when monitoring the status of biodiversity within reforested sites. Insects are an important component of terrestrial biodiversity but often require considerable resources to sample at species level. Ant genera and generic-based functional groups have been suggested as possible indicators of environmental disturbance. Here we ask to what extent the development of biodiversity is indicated by epigaeic ant genera and functional groups, across different types of reforestation in tropical and subtropical Australia. In each region, we used pitfall traps to sample the ants in replicate sites of: unmanaged regrowth, monoculture and mixed species plantations and ,ecological restoration' plantings, together with reference sites in pasture and rainforest. We recorded 35 epigaeic ant genera (and 4623 individuals) from 50 tropical sites, and 39 genera (and 9904 individuals) from 54 subtropical sites, with 47 genera overall. Community composition of both genera and functional groups differed between pasture and rainforest, although many genera were widespread in both. Reforested sites were intermediate between pasture and rainforest in both regions, and showed a gradient associated with decreasing grass and increasing tree and litter cover. Older monoculture plantations and ecological restoration plantings had the most rainforest-like ant assemblages, and mixed-species cabinet timber plots the least, of the reforested sites. We conclude that ground-active ant genera and functional groups sampled in rapid surveys by pitfall-trapping showed only a modest ability to discriminate among different types of reforestation. Species-level identification, perhaps together with expanded sampling effort, could be more informative, but would require resourcing beyond the scope of rapid assessments. [source]


Nonlinear reference tracking control of a gas turbine with load torque estimation

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 8 2008
B. Pongrácz
Abstract Input,output linearization-based adaptive reference tracking control of a low-power gas turbine model is presented in this paper. The gas turbine is described by a third-order nonlinear input-affine state-space model, where the manipulable input is the fuel mass flowrate and the controlled output is the rotational speed. The stability of the one-dimensional zero dynamics of the controlled plant is investigated via phase diagrams. The input,output linearizing feedback is extended with a load torque estimator algorithm resulting in an adaptive feedback scheme. The tuning of controller parameters is performed considering three main design goals: appropriate settling time, robustness against environmental disturbances and model parameter uncertainties, and avoiding the saturation of the actuator. Simulations show that the closed-loop system is robust with respect to the variations in uncertain model and environ-mental parameters and its performance satisfies the defined requirements. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Population stability in salmon species: effects of population size and female reproductive allocation

JOURNAL OF ANIMAL ECOLOGY, Issue 5 2003
Sigurd Einum
Summary 1Population stability (i.e. level of temporal variation in population abundance) is linked commonly to levels of environmental disturbances. However, populations may also differ in their propensity to dampen or amplify the effects of exogenous forces. Here time-series of population estimates were used to test for such differences among 104 populations of six salmon species. 2At the species level, Atlantic (Salmo salar L.), chinook (Oncorhynchus tshawytscha Walbaum) and coho salmon (O. kisutch W) were less variable than sockeye (O. nerka W) and pink salmon (O. gorbuscha W). Chum salmon (O. keta W) was more similar to sockeye and pink salmon. These differences may be related in part to differences in body size, and hence susceptibility to adverse environmental conditions, at the time when they migrate to the sea or lakes. 3At the population level no effect of fecundity on variability was found, in contrast to findings for marine fishes, nor of egg size. Whereas substantial differences in the temporal stability of environmental factors among geographically close populations may over-ride any effects of fecundity or egg size in fresh water, this is less likely in the marine environment where spatial autocorrelations of environmental variability are more pronounced. 4Variation in population sizes was related positively to the duration of time-series when using standard deviations of ln-transformed population estimates, and also when using linearly detrended population variation, suggesting non-linear long-term abundance trends in salmon populations that extend beyond the 7-year period of the shortest time-series. 5When controlling for differences among species, stability increased with increasing population size, and it is hypothesized that this is due to large populations having a more complex spatial and genetic structure than small populations due to wider spatial distribution. The effects of population size on stability, as well as differences in stability among species, suggest that population- and organism-specific characteristics may interact with exogenous forces to shape salmon population dynamics. [source]


Physiological effects of dominance hierarchies: laboratory artefacts or natural phenomena?

JOURNAL OF FISH BIOLOGY, Issue 1 2002
K. A. Sloman
Studies of fish behaviour have demonstrated the existence of social interactions that result in dominance hierarchies. In environments in which resources, such as food, shelter and mates, are limited, social competition results in some fish becoming dominant and occupying the most profitable positions. This behaviour has been observed in natural environments and also in many laboratory-based experiments. When two fish have been confined in a small tank, one of them usually has exhibited behaviour that suggests it is dominant over the other submissive animal. Physiological consequences of social interaction can be seen in both dominants and subordinates but are more extreme in the subordinate. However, this scenario is without doubt an artificial situation. Fewer experiments have been conducted using laboratory experiments that are more socially and physically complex than those experienced by dyads in tanks. In simple fluvial tanks, through which water is recirculated, the physiological responses of fish to social competition have generally been qualitatively similar to those recorded among dyads. However, when environmental disturbances, complex resource distributions, increase in water flushing, presence of predators and competing species of fish have been included in experimen-tal designs, there have been fewer, diminished or no physiological dierences between dominant and subordinate fish. There have been very few studies of physiology in relation to dominance in natural habitats, and those that have been conducted suggest that under some circumstances hierarchies may cause less intense physiological responses than have been suggested based on results of laboratory studies in simple environments. Possible reasons for these variations are discussed. The need is identified for a well structured experimental approach to the investi-gation of the causes and consequences of hierarchies if the ecology of wild fish is to be modelled eectively based on physiological processes. It is also suggested that the further development and application of techniques for monitoring physiologies of fish in the wild is important. [source]


Computational Biology Approaches to Plant Metabolism and Photosynthesis: Applications for Corals in Times of Climate Change and Environmental Stress

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 8 2010
M. James C. Crabbe
Knowledge of factors that are important in reef resilience helps us to understand how reef ecosystems react following major anthropogenic and environmental disturbances. The symbiotic relationship between the photosynthetic zooxanthellae algal cells and corals is that the zooxanthellae provide the coral with carbon, while the coral provides protection and access to enough light for the zooxanthellae to photosynthesise. This article reviews some recent advances in computational biology relevant to photosynthetic organisms, including Beyesian approaches to kinetics, computational methods for flux balances in metabolic processes, and determination of clades of zooxanthallae. Application of these systems will be important in the conservation of coral reefs in times of climate change and environmental stress. [source]


Quaternary landscape evolution: a framework for understanding contemporary erosion, southeast Spain

LAND DEGRADATION AND DEVELOPMENT, Issue 2 2002
A. E. Mather
Abstract Recent research into the long-term landscape development of a tectonically active terrain in arid SE Spain has revealed the significance of river capture in understanding current landscape instabilities (badlands and landslides). The river capture was initiated at c.100,ka,BP and effected a 90,m base-level change at the point of capture. This stimulated a wave of incision to propagate through the landscape to 20,km upstream of the capture site. The net effect of the associated increase in erosion has been to change valley shapes from broad and shallow to narrow and deep. The associated unloading and steepening of valley sides has led to a focus of landslide activity in lithologies with more unconfined compressive strength (limestones) and a dominance of gullying, piping and badland development in the lithologies with lower unconfined compressive strengths (marls and sands). Post-capture rapid valley widening was initially achieved through landslide development. This form of slope degradation was sustained in the more resistant, joint-controlled lithologies. In weaker lithologies it was superseded by badland development. The elevated sediment fluxes associated with the c.100,ka,BP base-level perturbation will continue into the near future, but are expected to decay, assuming that no additional environmental disturbances occur. The patterns of landscape instability witnessed today are controlled by (1) proximity to the areas affected by the base-level change and (2) the robustness of the local geology. Understanding of this long-term temporal context of the landscape provides a valuable spatial and temporal framework for land system management, facilitating the prediction of future natural trends in landscape stability. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Environmental colour intensifies the Moran effect when population dynamics are spatially heterogeneous

OIKOS, Issue 10 2007
David A. Vasseur
Evidence for synchronous fluctuations of spatially separated populations is ubiquitous in the literature, including accounts within and across taxa. Among the few mechanisms explaining this phenomenon is the Moran effect, whereby independent populations are synchronized by spatially correlated environmental disturbances. The body of research on the Moran effect predominantly assumes that environmental disturbances within a local site are serially uncorrelated; that is, successive observations in time at a particular local site are independent. Yet, many environmental variables are known to possess strong temporal autocorrelation , a character which has often been described as ,colour'. The omission of environmental colour from research on the Moran effect may be due in part to the lack of methods capable of generating sets of time series with a desired colour and spatial correlation. Here I present a novel and simple method designated as ,phase partnering' to generate such sets of time series and I investigate the combined impact of spatial correlation and environmental colour on population synchrony in two common models of population dynamics. For linear population dynamics, and for a subset of nonlinear population dynamics, coloured environments intensify the Moran effect when population dynamics are spatially heterogeneous; in coloured environments the spatial correlation between populations more closely mimics the spatial correlation between their respective environments. Given that most environmental variables are coloured, these results imply that the Moran effect may be a far more significant driver of regional-scale population and interspecific synchrony than is currently believed. [source]


Integrating ecology with hydromorphology: a priority for river science and management

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 1 2009
I.P. Vaughan
Abstract 1.The assessment of links between ecology and physical habitat has become a major issue in river research and management. Key drivers include concerns about the conservation implications of human modifications (e.g. abstraction, climate change) and the explicit need to understand the ecological importance of hydromorphology as prescribed by the EU's Water Framework Directive. Efforts are focusing on the need to develop ,eco-hydromorphology' at the interface between ecology, hydrology and fluvial geomorphology. Here, the scope of this emerging field is defined, some research and development issues are suggested, and a path for development is sketched out. 2.In the short term, major research priorities are to use existing literature or data better to identify patterns among organisms, ecological functions and river hydromorphological character. Another early priority is to identify model systems or organisms to act as research foci. In the medium term, the investigation of pattern,processes linkages, spatial structuring, scaling relationships and system dynamics will advance mechanistic understanding. The effects of climate change, abstraction and river regulation, eco-hydromorphic resistance/resilience, and responses to environmental disturbances are likely to be management priorities. Large-scale catchment projects, in both rural and urban locations, should be promoted to concentrate collaborative efforts, to attract financial support and to raise the profile of eco-hydromorphology. 3.Eco-hydromorphological expertise is currently fragmented across the main contributory disciplines (ecology, hydrology, geomorphology, flood risk management, civil engineering), potentially restricting research and development. This is paradoxical given the shared vision across these fields for effective river management based on good science with social impact. A range of approaches is advocated to build sufficient, integrated capacity that will deliver science of real management value over the coming decades. Copyright © 2007 John Wiley & Sons, Ltd. [source]


The potential of long-wavelength satellite-borne radar to support implementation of the Ramsar Wetlands Convention

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2007
Ake Rosenqvist
Abstract 1.This paper provides an introduction to Synthetic Aperture Radar (SAR) remote sensing and, in particular, the significance of long-wavelength (L-band) SAR for wetland applications relevant to the Ramsar Wetlands Convention. 2.The Convention has long been a supporter of effective wetland inventory being used to support management initiatives and the wise use of all wetlands. 3.Three major application areas have been identified where SAR data may constitute an important additional information source for wetland inventory and management. These comprise mapping of below-canopy inundation, monitoring of environmental disturbances and wetland inventories based on SAR mosaics. These areas have all previously been supported in general terms by formal resolutions on wetland inventory and assessment through the Convention with recognition that further technique development was required. 4.The potential to make further use of remote sensing is increased through wider use of the special features of SAR in situations where other data are less suitable. 5.The Japanese Advanced Land Observing Satellite (ALOS) provides an opportunity to support the Convention and its goal of wise use of all wetlands. Copyright © 2007 John Wiley & Sons, Ltd. [source]


A Study of Industry Evolution in the Face of Major Environmental Disturbances: Group and Firm Strategic Behaviour of Spanish Banks, 1983,1997,

BRITISH JOURNAL OF MANAGEMENT, Issue 3 2004
JoséÁngel Zúñiga-Vicente
This paper examines the story of the evolution of a specific industry through the application of dynamic strategic group analysis. In particular, we analyse the relationship between major environmental disturbances and changes that have occurred over time in the competitive structure of the industry regarding two closely related central questions. First, the way in which these environmental transformations have influenced group patterns and stability, and second, the way in which such environmental disturbances has affected the strategic positioning of individual firms. We resort to alternative theoretical perspectives in an attempt to answer both questions. The empirical setting is the population of Spanish banks over the period 1983,1997. We make use of a new grouping algorithm , the Model-based Clustering or MCLUST , which may be enormously fruitful in future empirical works on strategic groups. This method allows researchers to obtain the optimal number of groupings over time in a much more objective way than the cluster techniques used until now. Compared to previous dynamic studies that only consider the largest firms, our research illustrates how a richer analysis of an industry dynamics can be obtained by using a dynamic analysis of strategic groups. Our results show that while there have been no industry-wide identical groupings year to year, there is an important strategic stability at group and firm-level punctuated by a high degree of strategic instability at times of major environmental disturbances. [source]