Endothelial Interactions (endothelial + interaction)

Distribution by Scientific Domains


Selected Abstracts


Glial,Neuronal,Endothelial Interactions are Involved in the Control of GnRH Secretion

JOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2002
Vincent PrevotArticle first published online: 8 APR 200
Abstract In recent years compelling evidence has been provided that cell,cell interactions involving non-neuronal cells, such as glial and endothelial cells, are important in regulating the secretion of GnRH, the neuropeptide that controls both sexual development and adult reproductive function. Modification of the anatomical relationship that exist between GnRH nerve endings and glial cell processes in the external zone of the median eminence modulates the access of GnRH nerve terminals to the portal vasculature during the oestrous cycle. The establishment of direct neuro-haemal junctions between GnRH neuroendocrine terminals and the portal vasculature on the day of pro-oestrus may be critical for the transfer of GnRH upon its release into the fenestrated capillaries of the median eminence. Notwithstanding the importance of these plastic rearrangements, glial and endothelial cells also regulate GnRH neuronal function via specific cell,cell signalling molecules. While endothelial cells of the median eminence use nitric oxide to effect this regulatory control, astrocytes employ several growth factors, and in particular those of the EGF family and their erbB receptors to facilitate GnRH release during sexual development. Loss of function of each of these erbB receptors involved in the astroglial control of GnRH secretion leads to delayed sexual development. It is clear that regulation of GnRH secretion by cell,cell communication mechanisms other than transsynaptic inputs is an important component of the central neuroendocrine process controlling mammalian reproduction. [source]


n-3 polyunsaturated fatty acid supplementation, monocyte adhesion molecule expression and pro-inflammatory mediators in Type 2 diabetes mellitus

DIABETIC MEDICINE, Issue 1 2001
M. J. Sampson
SUMMARY Aims To examine the effect of n-3 polyunsaturated fatty acid supplements on the monocyte surface expression of adhesion molecules involved in pro-atherogenic monocyte,endothelial interactions, and on pro-inflammatory mediators in Type 2 diabetes mellitus. Methods Twenty-nine subjects with Type 2 diabetes and 21 controls without diabetes were studied. Monocyte expression of leucocyte function-associated antigens 1 and 3, intercellular adhesion molecule-1, and the major histocompatibility complex class II molecule HLA-DR were measured using a laser flow cytometric method. Supplementation with 2.08 g n-3 fatty acids for 21 days was undertaken and measurements repeated. Plasma soluble adhesion molecule concentrations, plasminogen activator inhibitor-1 activity and antigen and pro-inflammatory mediators (cysteinyl leukotriene and monocyte leukotriene B4) were also measured. Results Groups did not differ in monocyte expression of adhesion molecules or HLA-DR, or in leukotriene production although plasma soluble adhesion molecule concentrations were higher in the diabetes groups (P < 0.05). n-3 fatty acid supplementation influenced neither the expression of these molecules nor plasma soluble adhesion molecule concentrations or leukotriene production. Conclusions This study does not support increased monocyte adhesion molecule expression or abnormal monocyte production of pro-inflammatory mediators as mechanisms for increased atherogenic risk in Type 2 diabetes. Cardioprotective actions of n-3 fatty acids may not be mediated through these mechanisms. [source]


P-selectin mediates leukocyte rolling in concanavalin-A-induced hepatitis

LIVER INTERNATIONAL, Issue 5 2005
Sandra March
Abstract: Concanavalin- A (Con-A)-induced hepatitis is an experimental model of human autoimmune hepatitis characterized by leukocyte activation and infiltration of the liver. The aim of the present study was to evaluate the role of P-selectin on leukocyte,endothelial interactions within the hepatic microvasculature in response to Con-A. Methods: The study was performed in P-selectin-deficient mice and wild-type mice pretreated with anti-P-selectin blocking monoclonal antibody (mAb) or vehicle. After 2 h of Con-A (20 mg/kg i.v.) or PBS administration, leukocyte rolling and adhesion and the index of sinusoidal perfusion were evaluated using the intravital microscopy technique in the liver. Apoptosis was determined by flow cytometry analysis of caspase-3 activity assayed on freshly isolated hepatocytes. Results: Con-A induced a significant increase in leukocyte rolling, mainly located at the central venule (2.1±0.4 vs 0.6±0.2 cells/min in wild-type mice treated with vehicle) and less marked, but still significant, in portal venules. This was associated with a significant increase in leukocyte adhesion. In P-selectin-deficient mice treated with Con-A, leukocyte rolling in portal and central venules was markedly reduced. However, leukocyte adhesion was only partially attenuated. A few sinusoids were perfused in wild-type mice treated with Con-A (26%). The percentage of perfused sinusoids was significantly higher in P-selectin-deficient mice (45%; P<0.05 vs wild-type). Similar effects were noted after the simultaneous injection of Con-A and anti-P-selecting mAb in wild-type mice. After Con-A treatment, apoptosis was markedly reduced in isolated hepatocytes of P-selectin-deficent mice (37±7% vs 75±5% in wild type). Conclusion: The results of this intravital microscopy study clearly demonstrate that P-selectin is involved in the initial leukocyte rolling that leads to the development of Con-A-induced liver injury. [source]


Differential Roles of CD36, ICAM-1, and P-selectin in Plasmodium falciparum Cytoadherence In Vivo

MICROCIRCULATION, Issue 6 2007
Bryan G. Yipp
ABSTRACT Cytoadherence of Plasmodium falciparum -infected red blood cells (IRBCs) on human microvascular endothelium is mediated by synergistic adhesive interactions with different adhesion molecules in vitro. Here, the authors used a unique human/severe combined immunodeficient (SCID) mouse chimeric model to directly visualize IRBC,endothelial interactions in an intact human microvasculature in vivo. Stimulation of human skin grafts with 100 ng TNF-, for 4 h led to a dramatic reduction in the distance rolled by IRBCs before arrest, so that the majority of IRBCs adhered directly to the endothelium with a 1.8-fold increase in the number of adherent cells. The decrease in rolling distance and increase in adhesion could be reversed by anti-ICAM-1. More importantly, the effect of TNF-, could be seen only in the presence of CD36. A further increase in adhesion by 4.9-fold was observed after 24 h of TNF-, stimulation. The increase could be reversed by anti-ICAM-1, but not anti-VCAM-1. In histamine-stimulated grafts, the rolling flux fraction and adhesion increased by 2.8- and 1.6-fold, respectively. The increases were attributable to P-selectin as an inhibitory anti-P-selectin antibody abrogated both the increased rolling flux fraction and firm adhesion. These findings indicate that in addition to CD36, ICAM-1, and P-selectin are major contributors to the dynamic process of IRBC adhesion by different mechanisms in vivo. [source]


Protective Effects of Ischemic Preconditioning on the Intestinal Mucosal Microcirculation Following Ischemia,Reperfusion of the Intestine

MICROCIRCULATION, Issue 8 2005
ISMAIL H. MALLICK
ABSTRACT Objective: The small bowel villi are extremely sensitive to ischemia,reperfusion (IR) injury and a range of microcirculatory disturbances contribute to structural and functional changes. The aim of this study was to determine the protective effects of ischemic preconditioning (IPC) of the intestine on the mucosal villous microcirculation during IR injury of the intestine and whether heme oxygenase (HO) is involved in the protection. Methods: Rats were allocated into 4 groups: (1) sham, (2) IR consisting of 30 min of ischemia followed by 2 h of reperfusion, (3) IPC, as in IR group, but preceded by 10 min of ischemia and 10 min of reperfusion, and (4) with administration of zinc protoporphyrin, an HO inhibitor before IPC and IR. The mucosa of an exteriorized segment of ileum was visualized. Mucosal perfusion index (MPI), red blood cell (RBC) velocity and leukocyte,endothelial interactions during reperfusion were assessed continuously using in vivo fluorescence microscopy. HO activity in the ileum was assessed at the end of the reperfusion period. Results: IPC improved the MPI by 26% and the RBC velocity by 29% on comparison to IR. IR led to a 52% increase in leukocyte,endothelial interactions on comparison to IPC. The administration of zinc protoporphyrin reversed the beneficial effects of IPC. There was a two fold increase of HO activity in IPC compared to IR, whereas zinc protoporphyrin significantly reduced the HO activity. Conclusions: IPC conferred a protective effect on the villous microcirculation possibly via HO and might prove to be an effective strategy for the amelioration of IR injury. [source]


Effect of isoflurane on monocyte adhesion molecule expression in human whole blood,

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 5 2003
L. W. De Rossi
Background: Recruitment of monocytes to inflamed tissue is a crucial step in the acute inflammatory reaction. Adherence of monocytes to endothelial cells followed by transmigration depends on monocyte surface adhesion molecules, inflammatory cytokines and chemoattractant chemokines. In the present study, we determined the effect of isoflurane on monocyte adhesion receptor expression in vitro. Methods: Citrated whole blood was incubated for 60 min with either 0.5 or 1 MAC isoflurane. In unstimulated blood samples and after stimulation with N-formyl-methionyl-leucyl-phenylalanine (FMLP) monocyte cell-surface expression of the selectins PSGL-1 and L-selectin, and the ,2 -integrins CD11a and CD11b were evaluated by flow cytometry. Results: Isoflurane reduced significantly the expression of PSGL-1 on unstimulated monocytes, whereas the remaining selectins and ,2 -integrins were not affected. At both concentrations, the FMLP-induced removal of PSGL-1 from the monocyte surface was increased. Furthermore, at 1 MAC isoflurane the FMLP-induced increase in CD11a expression was significantly inhibited. The surface expression of L-selectin and CD11b was not affected following exposure to isoflurane. Conclusion: Isoflurane increases the removal of the selectin PSGL-1 from the monocyte surface. Since PSGL-1 is important during the initial step of monocyte adhesion to endothelial P-selectin, the decrease in monocyte surface PSGL-1 may have profound effects on monocyte,endothelial interactions. Furthermore, the effects of isoflurane on monocyte adhesion molecule expression are different from those reported for neutrophils. [source]


Role of protease-activated receptor-2 during cutaneous inflam-mation and the immune response

EXPERIMENTAL DERMATOLOGY, Issue 9 2004
M. Steinhoff
Protease-activated receptors (PARs) constitute a new subfamily of G-protein-coupled receptors with seven transmembrane domains which are activated by various serine proteases such as thrombin, cathepsin G, trypsin or tryptase, and bacterial proteases or mite antigens, for example. PAR2 is a receptor for mast cell tryptase or house dust mite allergens, which is released during inflammation and allergic reactions. In the skin, PAR2 is diversely expressed by keratinocytes, endothelial cells, and occasionally sensory nerves of human skin in various disease states. Moreover, immunocompetent cells such as T cells and neutrophils express functional PAR2, thereby contributing to inflammation and host defense. Own data revealed that PAR2 contributes to neurogenic inflammation by releasing neuropeptides from sensory nerves resulting in oedema, plasma extravasation and infiltration of neutrophils. Thus, mast cells may communicate with sensory nerves in inflammatory tissues by activating PAR2 via tryptase. Moreover, PAR2 agonists upregulate the expression of certain cell-adhesion molecules and cytokines such as interleukin-6 and interleukin-8 on dermal microvascular endothelial cells or regulate neutrophil migration, indicating that PAR2 plays an important role in leucocyte/endothelial interactions. These effects may be partly mediated by NF-,B, an important transcription factor during inflammation and immune response. PAR2 stimulation results in the activation of NF-,B on microvascular endothelial cells and keratinocytes, thereby regulating ICAM-1 expression. We also demonstrate evidence for a diverse expression of PAR2 in various skin diseases and highlight the recent knowledge about the important role of PAR2 during inflammation and the immune response. Together, PAR2 -modulating agents may be new tools for the treatment of inflammatory and allergic diseases in the skin. [source]