Endothelial Barrier (endothelial + barrier)

Distribution by Scientific Domains


Selected Abstracts


Endothelial barriers: from hypothetical pores to membrane proteins*

JOURNAL OF ANATOMY, Issue 6 2002
J. A. Firth
Abstract The anatomical counterpart of the physiologically defined small pore system of capillary endothelia has proved difficult to establish. In non-brain continuous capillaries, the contributions of caveolar and transmembrane pathways are likely to be small and paracellular clefts are probably the dominant routes. Analogy with epithelial paracellular pathways suggests that tight junctions may be the most restrictive elements. However, structural features of tight junction-based models are incompatible with physiological data; it is more likely that the tight junction acts as a shutter limiting the available cleft area. Proposed molecular sieves elsewhere in the paracellular pathway include the glycocalyx and the cadherin-based complexes of the adherens junctions. The molecular architecture of tight junctions and adherens junctions is moderately well defined in terms of molecular species, and there are differences at both sites between the endothelial and epithelial spectra of protein expression. However, definition of the size-restricting pore remains elusive and may require structural biology approaches to the spatial arrangements and interactions of the membrane molecular complexes surrounding the endothelial paracellular clefts. [source]


Postprandial interstitial insulin concentrations in type 2 diabetes relatives

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 6 2006
M. Sandqvist
Abstract Background, An endothelial barrier for the insulin transport from the circulation to the target tissues of insulin has previously been suggested to contribute to insulin resistance. The interstitial insulin concentration (I-insulin) and insulin kinetics following a mixed meal have, however, previously not been characterized in human adipose tissue. Subjects and methods, Eight nondiabetic first-degree relatives (FDR) of type 2 diabetes patients were recruited. Their I-insulin was measured by microdialysis after a test meal with or without oral administration of the insulin secretagogue nateglinide (120 mg). In parallel, adipose tissue blood flow and lipolysis were measured by xenon-clearance and microdialysis, respectively. Results, The I-insulin increased after the test meal, and this response was more prominent on the day the subjects received the nateglinide tablet when compared with the day the subjects received the placebo tablet [I-insulin incremental area under the curve (IAUC) nateglinide 7612 ± 3032 vs. Plac 4682 ± 2613 pmol L,1 min; P < 0·05, mean ± SE]. However, the postprandial I-insulinmax/P-insulinmax ratio was similar on the two test days (nateglinide: 213 ± 62 vs. 501 ± 92 pmol L,1, I/P-ratio: 0·38 ± 0·06 and placebo: 159 ± 39 vs. 410 ± 74 pmol L,1, I/P-ratio: 0·36 ± 0·05). There was no difference in time of onset of insulin action in situ, or responsiveness, when comparing placebo and nateglinide. Conclusions, Microdialysis can now be used to measure the I-insulin in human adipose tissue following a mixed meal. The data also showed that the transendothelial delivery of insulin occurs rapidly, supporting the concept that transcapillary insulin transfer is a nonsaturable process in nondiabetic first-degree relatives of type 2 diabetes patients. [source]


Role of Rac 1 and cAMP in endothelial barrier stabilization and thrombin-induced barrier breakdown

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009
Y. Baumer
Barrier stabilizing effects of cAMP as well as of the small GTPase Rac 1 are well established. Moreover, it is generally believed that permeability-increasing mediators such as thrombin disrupt endothelial barrier functions primarily via activation of Rho A. In this study, we provide evidence that decrease of both cAMP levels and of Rac 1 activity contribute to thrombin-mediated barrier breakdown. Treatment of human dermal microvascular endothelial cells (HDMEC) with Rac 1-inhibitor NSC-23766 decreased transendothelial electrical resistance (TER) and caused intercellular gap formation. These effects were reversed by addition of forskolin/rolipram (F/R) to increase intracellular cAMP but not by the cAMP analogue 8-pCPT-2,-O-Methyl-cAMP (O-Me-cAMP) which primarily stimulates protein kinase A (PKA)-independent signaling via Epac/Rap 1. However, both F/R and O-Me-cAMP did not increase TER above control levels in the presence of NSC-23766 in contrast to experiments without Rac 1 inhibition. Because Rac 1 was required for maintenance of barrier functions as well as for cAMP-mediated barrier stabilization, we tested the role of Rac 1 and cAMP in thrombin-induced barrier breakdown. Thrombin-induced drop of TER and intercellular gap formation were paralleled by a rapid decrease of cAMP as revealed by fluorescence resonance energy transfer (FRET). The efficacy of F/R or O-Me-cAMP to block barrier-destabilizing effects of thrombin was comparable to Y27632-induced inhibition of Rho kinase but was blunted when Rac 1 was inactivated by NSC-23766. Taken together, these data indicate that decrease of cAMP and Rac 1 activity may be an important step in inflammatory barrier disruption. J. Cell. Physiol. 220: 716,726, 2009. © 2009 Wiley-Liss, Inc. [source]


Microvascular Solute and Water Transport

MICROCIRCULATION, Issue 1 2005
FITZ-ROY E. CURRY
ABSTRACT Objective: This review evaluate [1] the regulation of water and solute transport across the endothelial barrier in terms of pore theory and the glycocalyx-junction-break model of capillary permeability; and [2] the mechanisms regulating permeability based on experiments using cultured endothelial cells and intact microvessels. Conclusions: The current form of the glycocalyx-junction-break model of capillary permeability describes the selectivity of the capillary wall (pore size) in terms of the space between the fibers of a quasi-periodic matrix on the endothelial cell surface and the area for exchange (pore number) in terms of the length and frequency of breaks in the tight junction strands. An independent test of this model in a range of mammalian microvascular beds is new experimental evidence that the colloid osmotic pressure of plasma proteins is developed across the glycocalyx, not across the whole microvessel wall. We are beginning to understand that endothelial cells may change their phenotype in response to physical and chemical stresses. Such changes in phenotype may explain changes in the regulation of endothelial barrier function in intact microvessels that have previously been exposed to injury and differences in the regulation of contractile mechanisms between endothelial cells in vivo and in vitro. [source]


Monocyte-Induced Endothelial Calcium Signaling Mediates Early Xenogeneic Endothelial Activation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2005
Mark D. Peterson
Hallmarks of delayed xenograft rejection include monocyte infiltration, endothelial cell activation and disruption of the endothelial barrier. The monocyte is an important initiator of this type of rejection because monocytes accumulate within hours after xenografting and prior monocyte depletion suppresses the development of this type of rejection. However, the mechanisms that mediate monocyte-induced xenograft injury are unclear at present. Here we report that human monocytes activate xenogeneic endothelial cells through calcium signals. Monocyte contact with porcine but not human endothelium leads to an endothelial calcium transient mediated via a G-protein-coupled receptor (GPCR) that results in up-regulation of porcine VCAM-1 and E-selectin. Although human monocyte adhesion was greater to porcine than to human endothelium, especially when studied under laminar flow, blockade of the xeno-specific endothelial calcium signals did not reduce adhesion of human monocytes to porcine endothelium. Human monocyte contact to porcine endothelium also resulted in reorganization of the F-actin cytoskeleton with a concomitant increase in endothelial monolayer permeability. In contrast to the effect on adhesion, these changes appear to be regulated through endothelial calcium signals. Taken together, these data suggest that human monocytes are capable of activating xenogeneic endothelial cells through calcium transients, as well as other distinct pathways. [source]


Microfluidic Tissue Model for Live Cell Screening

BIOTECHNOLOGY PROGRESS, Issue 4 2007
Philip J. Lee
We have developed a microfluidic platform modeled after the physiologic microcirculation for multiplexed tissue-like culture and high-throughput analysis. Each microfabricated culture unit consisted of three functional components: a 50 ,m wide cell culture pocket, an artificial endothelial barrier with 2 ,m pores, and a nutrient transport channel. This configuration enabled a high density of cancer cells to be maintained for over 1 week in a solid tumor-like morphology when fed with continuous flow. The microfluidic chip contained 16 parallel units for "flow cell" based experiments where live cells were exposed to a soluble factor and analyzed via fluorescence microscopy or flow-through biochemistry. Each fluidically independent tissue unit contained ,500 cells fed with a continuous flow of 10 nL/min. As a demonstration, the toxicity profile of the anti-cancer drug paclitaxel was collected on HeLa cells cultured in the microfluidic format and compared with a 384-well dish for up to 5 days of continuous drug exposure. [source]