Home About us Contact | |||
Endoplasmatic Reticulum (endoplasmatic + reticulum)
Selected AbstractsOrganelle-specific expression of subunit ND5 of human complex I (NADH dehydrogenase) alters cation homeostasis in Saccharomyces cerevisiaeFEMS YEAST RESEARCH, Issue 6 2010Wojtek Steffen Abstract The ND5 component of the respiratory complex I is a large, hydrophobic subunit encoded by the mitochondrial genome. Its bacterial homologue, the NDH-1 subunit NuoL, acts as a cation transporter in the absence of other NDH-1 subunits. Mutations in human ND5 are frequently observed in neurodegenerative diseases. Wild type and mutant variants of ND5 fused to GFP or a FLAG peptide were targeted to the endoplasmatic reticulum (ER) or the inner mitochondrial membrane of Saccharomyces cerevisiae, which lacks an endogenous complex I. The localization of ND5 fusion proteins was confirmed by microscopic analyses of S. cerevisiae cells, followed by cellular fractionation and immunostaining. The impact of the expression of ND5 fusion proteins on the growth of S. cerevisiae in the presence and absence of added salts was studied. ER-resident ND5 conferred Li+ sensitivity to S. cerevisiae, which was lost when the E145V variant of ND5 was expressed. All variants of ND5 tested led to increased resistance of S. cerevisiae at high external concentrations of Na+ or K+. The data seem to indicate that ND5 influences the salt homeostasis of S. cerevisiae independent of other complex I subunits, and paves the way for functional studies of mutations found in mitochondrially encoded complex I genes. [source] Mammalian Phosphatidylinositol 4-KinasesIUBMB LIFE, Issue 2 2003Ludwig M. G. Heilmeyer Jr. Abstract Three phosphatidylinositol 4-kinase isoforms, PI4K 230, 92 and 55 have been cloned and sequenced allowing a much wider characterization than the previously employed enzymological typing into type II and III enzymes. PI4K 230 and 92 contain a highly conserved catalytic core, PI4K55 one with a much lower degree of similarity. Candidate kinase motifs, deduced from the protein kinase super family, are absolutely conserved in all isoforms. Kinase activities are described based on their sensitivity and reactivity towards wortmannin, phenylarsine oxide (PAO) and 5,-p-fluorosulfonylbenzoyladenosine (FSBA). Localization of all isoforms in the cell is reported. All enzymes contain nuclear localization and export sequence motifs (NLS and NES) leading to the expectation that they can be transferred to the nucleus. PI4K230 has been found in the nucleolus, PI4K92 in the nucleus, additionally further broadening the function of these enzymes. In the cytoplasm of neuronal cells, PI4K230 is distributed evenly on membranes that are ultra structurally cisterns of the rough endoplasmatic reticulum, outer membranes of mitochondria, multivesicular bodies, and are in close vicinity of synaptic contacts. PI4K92 is functionally characterized as a key enzyme regulating Golgi disintegration/reorganization during mitosis probably via phosphorylation by cyclin-dependent kinases on well-defined sites. PI4K55 is involved in the production of second messengers, diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3) at the plasma membrane, moreover, in the endocytotic pathway in the cytoplasm. [source] Effects of ultraviolet radiation and temperature on the ultrastructure of zoospores of the brown macroalga Laminaria hyperboreaPLANT BIOLOGY, Issue 3 2008F. S. Steinhoff Abstract The interactive effects of an 8 h exposure to UV radiation and altered temperatures on the ultrastructure and germination of zoospores of the sublittoral brown alga Laminaria hyperborea (Gunn.) Foslie were investigated for the first time. Spores were exposed to four temperatures (2, 7, 12 and 17 °C) and three light regimes (PAR, PAR + UV-A, PAR + UV-A+UV-B). Freshly-released spores of L. hyperborea lack a cell wall and contain a nucleus with fine granular nucleoplasm and a nucleolus, one chloroplast, several mitochondria, dictyosomes and an endoplasmatic reticulum. Further, several kinds of so-called adhesive vesicles, lipid globuli and physodes containing UV-absorbing phlorotannins are embedded in the cytoplasm. No eye-spot is present. Physodes were found but they were rare and small. After an 8 h exposure to UV-B, the nucleoplasm had a mottled structure, chloroplasts contained plastoglobuli, the structure of the mitochondria changed from crista- to sacculus-type and germination was strongly inhibited at all temperatures. UV-A only had an impact on the ultrastructure at the highest temperature tested. The strongest effects were found at 17 °C, where germination was reduced to 35%, 32% and 9% after exposure to PAR, PAR+UV-A and PAR + UV-A + UV-B, respectively. This study indicates that UV-B radiation has strong damaging effects on the physiology and ultrastructure of zoospores of L. hyperborea. The results are important for developing scenarios for the effect of enhanced UV radiation and increasing temperatures caused by global climate changes. [source] Hemocytes of the cochineal insect: ultrastructureARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2010Sandra Caselín-Castro Abstract Using transmission electron microscopy, light microscopy (Giemsa May-Grumwald), and the Periodic Acid-Schif (PAS) and Sudan Black B staining techniques, hemocytes in the hemolymph of adult female Dactylopius coccus were characterized. The following, in order of abundance, were found: granulocytes, plasmatocytes, prohemocytes, and oenocytoids. Granulocytes varied in size with granulations in the cytoplasm, a large quantity of mitochondria, rugose endoplasmatic reticulum, ribosomes and vesicles, central or exocentric, spherical and occasionally lobulate nucleus. Plasmatocytes were polymorphic with irregularities in the plasma membrane; cytoplasm contained mitochondria, rugose endoplasmatic reticulum and vesicles, and exocentric, spherical, or irregular nucleus. In both types of hemocytes, scant polysaccharides and lipids were found. Prohemocytes were small and spherical with homogeneous cytoplasm and large exocentric nuclei. Oenocytoids were oval or irregular with dense homogeneous cytoplasm and elongated exocentric nuclei. The percentages of granulocytes on different days (d 1 and 10) during the life of the adult female were significantly different, as were those of plasmatocytes on d 30 and 50 and prohemocytes on d 1 and 50. © 2010 Wiley Periodicals, Inc. [source] Off-Target Effects Related to the Phosphorothioate Modification of Nucleic AcidsCHEMMEDCHEM, Issue 8 2010Johannes Winkler Dr. Abstract Phosphorothioate antisense oligonucleotides have been widely used in clinical studies for rational sequence-specific gene silencing. However, several sequence-unspecific off-target effects have been recently described for this compound class. In contrast to siRNA-mediated knockdown of the same gene, the bcl-2 -targeted oblimersen (Genasense, G3139) downregulates a number of proteins involved in apoptotic resistance and several glycolytic enzymes in 607B human melanoma cells. Regardless of their target, phosphorothioate-modified antisense and siRNA compounds, but not oligonucleotides with a phosphodiester backbone, resulted in a similar impact on the proteome. Unspecifically downregulated proteins include cancer markers involved in apoptotic resistance and endoplasmatic reticulum (ER) stress such as the 78,kDa glucose regulated protein (GRP,78), protein disulfide isomerase,A3 (PDIA3, GRP,58), calumenin, and galectin-1, as well as the glycolytic enzymes triose phosphate isomerase, glyceraldehyde phosphodehydrogenase, and phosphoglycerate mutase. The depletion of the glycolytic enzymes is reflected by a decrease in L -lactate production, indicating a partial reversal of the Warburg effect. Compared with other phosphorothioate oligonucleotides, oblimersen generally led to a more pronounced effect both in terms of the number of influenced proteins and the extent of downregulation, suggesting a synergistic effect of Bcl-2 downregulation. [source] |