Endocrine Organ (endocrine + organ)

Distribution by Scientific Domains


Selected Abstracts


Inflamed adipose tissue, insulin resistance and vascular injury

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 8 2008
Christian X. Andersson
Abstract Type 2 diabetes is the most common metabolic disorder today and has reached epidemic proportions in many countries. Insulin resistance and inflammation play a central role in the pathogenesis of type 2 diabetes and are present long before the onset of the disease. During this time, many of the complications associated with type 2 diabetes are initiated. Of major concern is the two- to fourfold increase in cardiovascular morbidity and mortality in this group compared to a nondiabetic population. Obesity, characterized by enlarged fat cells, and insulin resistance are, like type 2 diabetes, associated with impaired adipogenesis and a low-grade chronic inflammation that to a large extent emanates from the adipose tissue. Both these processes contribute to unfavourable alterations of the circulating levels of several bioactive molecules (adipokines) that are secreted from the adipose tissue, many of which have documented inhibitory effects on insulin sensitivity in the liver and peripheral tissues and, in addition, have negative effects on the cardiovascular system. Here we review current knowledge of the adipose tissue as an endocrine organ, the local and systemic effects of a chronic state of low-grade inflammation residing in the adipose tissue, and, in particular, the effects of inflammation and circulating adipokines on the vascular wall. Copyright © 2008 John Wiley & Sons, Ltd. [source]


An adipocentric view of signaling and intracellular trafficking

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 5 2002
Silvia Mora
Abstract Adipocytes have traditionally been considered to be the primary site for whole body energy storage mainly in the form of triglycerides and fatty acids. This occurs through the ability of insulin to markedly stimulate both glucose uptake and lipogenesis. Conventional wisdom held that defects in fuel partitioning into adipocytes either because of increased adipose tissue mass and/or increased lipolysis and circulating free fatty acids resulted in dyslipidemia, obesity, insulin resistance and perhaps diabetes. However, it has become increasingly apparent that loss of adipose tissue (lipodystrophies) in both animal models and humans also leads to metabolic disorders that result in severe states of insulin resistance and potential diabetes. These apparently opposite functions can be resolved by the establishment of adipocytes not only as a fuel storage depot but also as a critical endocrine organ that secretes a variety of signaling molecules into the circulation. Although the molecular function of these adipocyte-derived signals are poorly understood, they play a central role in the maintenance of energy homeostasis by regulating insulin secretion, insulin action, glucose and lipid metabolism, energy balance, host defense and reproduction. The diversity of these secretory factors include enzymes (lipoprotein lipase (LPL) and adipsin), growth factors [vascular endothelial growth factor (VEGF)], cytokines (tumor necrosis factor-,, interleukin 6) and several other hormones involved in fatty acid and glucose metabolism (leptin, Acrp30, resistin and acylation stimulation protein). Despite the large number of molecules secreted by adipocytes, our understanding of the pathways and mechanisms controlling intracellular trafficking and exocytosis in adipocytes is poorly understood. In this article, we will review the current knowledge of the trafficking and secretion processes that take place in adipocytes, focusing our attention on two of the best characterized adipokine molecules (leptin and adiponectin) and on one of the most intensively studied regulated membrane proteins, the GLUT4 glucose transporter. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Molecular mechanisms of insulin resistance

DIABETIC MEDICINE, Issue 6 2005
S. Schinner
Abstract Currently, we observe an epidemic expansion of diabetes mellitus. In subjects with Type 2 diabetes the resistance of fat, muscle and liver to insulin is the central pathophysiological event in the development of this disease. Genetic and environmental factors play a major role in this process, although the precise pathogenesis of insulin resistance and Type 2 diabetes is still largely unknown. However, recent studies have contributed to a deeper understanding of the molecular mechanisms underlying this process. In this review we therefore summarize the current developments in understanding the pathophysiological process of insulin resistance and Type 2 diabetes. Among the many molecules involved in the intracellular processing of the signal provided by insulin, insulin receptor substrate (IRS)-2, the protein kinase B (PKB)-, isoform and the forkhead transcription factor Foxo1a (FKHR) are of particular interest in this context as recent data have provided strong evidence that dysfunction of these proteins results in insulin resistance in-vivo. Furthermore, we have now increasing evidence that the adipose tissue not only produces free fatty acids that contribute to insulin resistance, but also acts as a relevant endocrine organ producing mediators (adipokines) that can modulate insulin signalling. The identification of the molecular pathophysiological mechanisms of insulin resistance and Type 2 diabetes is essential for the development of novel and more effective therapies to better treat our patients with insulin resistance and Type 2 diabetes. [source]


Cross-talk between skeletal muscle and adipose tissue: A link with obesity?

MEDICINAL RESEARCH REVIEWS, Issue 1 2005
Josep M. Argilés
Abstract Since the discovery of leptin, the adipocyte and its products have been the subject of intensive research. Thus, it has been demonstrated that adipose tissue plays a central role in energy homeostasis, behaving as an endocrine organ that expresses molecules involved in regulation of metabolism; alterations in the expression or activity of those molecules have a fundamental role in pathologies such as obesity and insulin resistance. However, little is known about the role played by another tissue, skeletal muscle, which may have similar functions regarding metabolism control. Indeed, some molecules expressed in this tissue have recently been shown to modulate adipose metabolism. The present review considers the metabolic interrelationships and cross-talk of signals derived from both skeletal muscle and adipose tissue. It is suggested that cytokines derived from both tissues may have an important role in maintaining an adequate ratio of skeletal muscle to fat and thus may play an important role in the control of body weight. IL-15 (a cytokine highly-expressed in skeletal muscle), TNF-,, and leptin could play a decisive role in the suggested "conversation" between adipose tissue and skeletal muscle. © 2004 Wiley Periodicals, Inc. [source]


Broad tumor spectrum in a mouse model of multiple endocrine neoplasia type 1

INTERNATIONAL JOURNAL OF CANCER, Issue 2 2007
Kelly A. Loffler
Abstract Multiple endocrine neoplasia type 1 (MEN1) is an inherited cancer predisposition syndrome typified by development of tumors in parathyroid, pituitary and endocrine pancreas, as well as less common sites including both endocrine and nonendocrine organs. Deletion or mutation of the tumor suppressor gene MEN1 on chromosome 11 has been identified in many cases of MEN1 as well as in sporadic tumors. The molecular biology of menin, the protein encoded by MEN1, remains poorly understood. Here we describe a mouse model of MEN1 in which tumors were seen in pancreatic islets, pituitary, thyroid and parathyroid, adrenal glands, testes and ovaries. The observed tumor spectrum therefore includes types commonly seen in MEN1 patients and additional types. Pancreatic pathology was most common, evident in over 80% of animals, while other tumor types developed with lower frequency and generally later onset. Tumors of multiple endocrine organs were observed frequently, but progression to carcinoma and metastasis were not evident. Tumors in all sites showed loss of heterozygosity at the Men1 locus, though the frequency in testicular tumors was only 36%, indicating that a different molecular mechanism of tumorigenesis occurs in those Leydig tumors that do not show loss of the normal Men1 allele. Menin expression was below the level of detection in ovary, thyroid and testis, but loss of nuclear menin immunoreactivity was observed uniformly in all pancreatic islet adenomas and in some hyperplastic islet cells, suggesting that complete loss of Men1 is a critical point in islet tumor progression in this model. © 2006 Wiley-Liss, Inc. [source]


Spontaneous neoplasia in the baboon (Papio spp.)

JOURNAL OF MEDICAL PRIMATOLOGY, Issue 2 2007
Rachel E. Cianciolo
Abstract Background, There are several comprehensive reviews of spontaneous neoplasia in non-human primates that compile individual cases or small numbers of cases, but do not provide statistical analysis of tumor incidence, demographics, or epidemiology. Methods, This paper reports all spontaneous neoplasms (n = 363) diagnosed over a 15-year period in a baboon colony with an average annual colony population of 4000. Results, A total of 363 spontaneous neoplasms were diagnosed in 313 baboons: 77 cases were males (25%) and 236 were females (75%); ages ranged from 1 month to 33 years (mean 16.5, median 17). Conclusions, The organ systems affected in descending order of number of neoplasms were hematopoietic organs (n = 101, 28%), urogenital tract (n = 78, 21%), integument (n = 43, 12%), alimentary tract (n = 43, 12%), endocrine organs (n = 40, 11%), nervous system (n = 33, 9%), musculoskeletal system (n = 5, 1%), and respiratory system (n = 4, 1%). Malignant cases numbered 171 (47%); 192 (53%) cases were benign. [source]


Estrogen and its receptors in cancer

MEDICINAL RESEARCH REVIEWS, Issue 6 2008
George G Chen
Abstract The involvement of estrogen and its receptors in the development of cancer has been known for years. However, the exact mechanism responsible is far from clear. The estrogen-mediated carcinogenic process is complicated by recent findings, which reveal that estrogens have multiple functions in cells, which can be either adverse or beneficial, and that the effects of estrogen may be cell-type or organ dependent. The estrogenic effect may be also greatly influenced by the state of two estrogen receptors, ER, and ER,. This review will discuss the role and function of estrogens and its receptors in cancers of three categories: (1) Breast cancer and gynecologic cancers, (2) Cancers of endocrine organs, (3) Lung cancer and cancers of digestive system. We will also review some novel treatments aiming to interfere with relevant pathways mediated by estrogens and its receptors. © 2008 Wiley Periodicals, Inc. Med Res Rev, 28, No. 6, 954,974, 2008 [source]