Home About us Contact | |||
Affinity Purification (affinity + purification)
Selected AbstractsA Graphene Oxide,Streptavidin Complex for Biorecognition , Towards Affinity PurificationADVANCED FUNCTIONAL MATERIALS, Issue 17 2010Zunfeng Liu Abstract In our postgenomic era, understanding of protein-protein interactions by characterizing the structure of the corresponding protein complex is becoming increasingly important. An important problem is that many protein complexes are only stable for a few minutes. Dissociation will occur when using the typical, time-consuming purification methods such as tandem affinity purification and multiple chromatographic separations. Therefore, there is an urgent need for a quick and efficient protein-complex purification method for 3D structure characterization. The graphene oxide (GO)·streptavidin complex is prepared via a GO·biotin·streptavidin strategy and used for affinity purification. The complex shows a strong biotin recognition capability and an excellent loading capacity. Capturing biotinylated DNA, fluorophores and Au nanoparticles on the GO·streptavidin complexes demonstrates the usefulness of the GO·streptavidin complex as a docking matrix for affinity purification. GO shows a high transparency towards electron beams, making it specifically well suited for direct imaging by electron microscopy. The captured protein complex can be separated via a filtration process or even via on-grid purification and used directly for single-particle analysis via cryo-electron microscopy. Therefore, the purification, sample preparation, and characterization are rolled into one single step. [source] Inexpensive and Generic Affinity Purification of Recombinant Proteins Using a Family 2a CBM Fusion TagBIOTECHNOLOGY PROGRESS, Issue 5 2004Beatriz Rodriguez The selective binding of the family 2a carbohydrate binding module (CBM2a) of xylanase 10A of the soil bacterium Cellulomonas fimi to a variety of cellulosic substrates is shown to provide a new, cost-effective affinity chromatography system for purification of recombinant protein. Genetic linkage of CBM2a to a target protein, in this case protein A from Staphylococcus aureus, results in a fusion protein that binds strongly to the particulate-cellullose resin Avicel PH101 and retains the biological activity of the fusion partner. Affinity purification of protein A-CBM2a from the supernatant of a recombinant E. coli JM101 culture results in a product purity of greater than 95% and a product concentration factor of 34 ± 3. Measured column parameters are combined with one-dimensional equations governing continuity and intraparticle diffusion to predict product breakthrough curves with good accuracy over the range of realistic operating conditions. Peak spreading within the column is controlled by intraparticle diffusion for CBM2a and by a combination of film mass transfer and intraparticle diffusion for the larger protein A-CBM2a fusion protein. [source] Affinity Purification of Lipid VesiclesBIOTECHNOLOGY PROGRESS, Issue 1 2004Boris Peker We present a novel column chromatography technique for recovery and purification of lipid vesicles, which can be extended to other macromolecular assemblies. This technique is based on reversible binding of biotinylated lipids to monomeric avidin. Unlike the very strong binding of biotin and biotin-functionalized molecules to streptavidin, the interaction between biotin-functionalized molecules and monomeric avidin can be disrupted effectively by ligand competition from free biotin. In this work, biotin-functionalized lipids (biotin-PEG-PE) were incorporated into synthetic lipid vesicles (DOPC), resulting in unilamellar biotinylated lipid vesicles. The vesicles were bound to immobilized monomeric avidin, washed extensively with buffer, and eluted with a buffer supplemented with free biotin. Increasing the biotinyl lipid molar ratio beyond 0.53% of all lipids did not increase the efficiency of vesicle recovery. A simple adsorption model suggests 1.1 × 1013 active binding sites/mL of resin with an equilibrium binding constant of K = 1.0 × 108 M,1. We also show that this method is very robust and reproducible and can accommodate vesicles of varying sizes with diverse contents. This method can be scaled up to larger columns and/or high throughput analysis, such as a 96-well plate format. [source] RANKL Treatment Releases the Negative Regulation of the Poly(ADP-Ribose) Polymerase-1 on Tcirg1 Gene Expression During Osteoclastogenesis,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2006Guillaume E Beranger Abstract The Tcirg1 gene encodes the osteoclast-specific a3 isoform of the V-ATPase a subunit. Using the mouse osteoclastic model RAW264.7 cells, we studied Tcirg1 gene expression, and we identified PARP-1 as a transcriptional repressor negatively regulated by RANKL during osteoclastogenesis. Introduction: The TCIRG1 gene encodes the a3 isoform of the V-ATPase a subunit, and mutations at this locus account for ,60% of infantile malignant osteopetrosis cases. Using RAW264.7 cells as an osteoclastic differentiation model, we undertook a transcriptional study of the mouse Tcirg1 gene focused on the 4-kb region upstream of the transcription starting point. Materials and Methods: The promoter activity of serial-deletion fragments of the Tcirg1 gene promoter was monitored throughout the RAW264.7 cell differentiation process. We next performed EMSA, UV cross-linking, affinity purification, mass spectrometry analysis, gel supershift, and siRNA transfection experiments to identify the factor(s) interacting with the promoter. Results: The ,3946/+113 region of the mouse Tcirg1 gene displayed a high basal promoter activity, which was enhanced by RANKL treatment of RAW264.7 cells. Constructs deleted up to ,1589 retained this response to RANKL. A deletion up to ,1402 induced a 3-fold enhancement of the basal activity, whereas RANKL response was not affected. EMSA experiments led us to identify within the ,1589/,1402 region, a 10-nucleotide sequence, which bound a nuclear protein present in nondifferentiated RAW264.7 cells. This interaction was lost using nuclear extracts derived from RANKL-treated cells. Affinity purification followed by mass spectrometry analysis and gel supershift assay allowed the identification of poly(ADP-ribose) polymerase-1 (PARP-1) as this transcriptional repressor, whereas Western blot experiments revealed the cleavage of the DNA-binding domain of PARP-1 on RANKL treatment. Finally, both PARP-1 depletion after siRNA transfection and RAW264.7 cell treatment by an inhibitor of PARP-1 activity induced an increase of a3 mRNA expression. Conclusions: We provide evidence that the basal transcription activity of the Tcirg1 gene is negatively regulated by the binding of PARP-1 protein to its promoter region in mouse pre-osteoclast. On RANKL treatment, PARP-1 protein is cleaved and loses its repression effect, allowing an increase of Tcirg1 gene expression that is critical for osteoclast function. [source] Inexpensive and Generic Affinity Purification of Recombinant Proteins Using a Family 2a CBM Fusion TagBIOTECHNOLOGY PROGRESS, Issue 5 2004Beatriz Rodriguez The selective binding of the family 2a carbohydrate binding module (CBM2a) of xylanase 10A of the soil bacterium Cellulomonas fimi to a variety of cellulosic substrates is shown to provide a new, cost-effective affinity chromatography system for purification of recombinant protein. Genetic linkage of CBM2a to a target protein, in this case protein A from Staphylococcus aureus, results in a fusion protein that binds strongly to the particulate-cellullose resin Avicel PH101 and retains the biological activity of the fusion partner. Affinity purification of protein A-CBM2a from the supernatant of a recombinant E. coli JM101 culture results in a product purity of greater than 95% and a product concentration factor of 34 ± 3. Measured column parameters are combined with one-dimensional equations governing continuity and intraparticle diffusion to predict product breakthrough curves with good accuracy over the range of realistic operating conditions. Peak spreading within the column is controlled by intraparticle diffusion for CBM2a and by a combination of film mass transfer and intraparticle diffusion for the larger protein A-CBM2a fusion protein. [source] Identification of rat urinary glycoproteome captured by three lectins using gel and LC-based proteomicsELECTROPHORESIS, Issue 21 2008Pyong-Gon Moon Abstract Many different types of urine proteome studies have been done, but urine glycoprotein studies are insufficient. Therefore, we studied the glycoproteins from rat urine, which could be used to identify biomarkers in an animal model. First, urinary proteins were prepared by using the dialysis and lyophilizing methods from rat urine. Glycoproteins enriched with lectin affinity purification, concanavalin A, jacalin and wheat germ agglutinin from the urinary proteins were separated by means of reverse-phase fast protein LC (FPLC) or 1-D PAGE. Each FPLC fraction and 1-D PAGE gel band were trypsin-digested and analyzed by means of nanoLC-MS/MS. LC-MS/MS analyses were carried out by using linear ion trap MS. A total of 318 rat urinary glycoproteins were identified from the FPLC fractions and gel bands; approximately 90% of identified proteins were confirmed as glycoproteins in Swiss-Prot. Many glycoproteins, known as biomarkers, including C-reactive protein, uromodulin, amyloid beta A4 protein, alpha-1-inhibitor 3, vitamin D-binding protein, kallikrein 3 and fetuin-A were identified in this study. By studying urinary glycoproteins collected from rat, these results may help to assist in identifying urinary biomarkers regarding various types of disease models. [source] Comprehensive proteome analysis by chromatographic protein prefractionationELECTROPHORESIS, Issue 7-8 2004Pierre Lescuyer Abstract Protein copy number is distributed from 7 to 8 orders of magnitude in cells and probably up to 12 orders of magnitude in plasma. Classical silver-stained two-dimensional electrophoresis (2-DE) can only display up to four orders of magnitude. This is a major drawback since it is assumed that most of the regulatory proteins are low-abundance gene products. It is thus clear that the separation of low copy number proteins in amounts sufficient for postseparation analysis is an important issue in proteome studies to complete the comprehensive description of the proteome of any given cell type. The visualization of a polypeptide on a 2-DE gel will depend on the copy number, on the quantity loaded onto the gel and on the method of detection. As the amount of protein that can be loaded onto a gel is limited, one efficient solution is to fractionate the sample prior to 2-DE analysis. Several approaches exist including subcellular fractionation, affinity purification and chromatographic and electrophoretic protein prefractionation. The chromatographic step adds a new dimension in the protein separation using specific protein properties. It allows proteins to be adsorbed to a surface and eluted differentially under certain conditions. This review article presents studies combining chromatography-based methods to 2-DE analysis and draws general conclusions on this strategy. [source] Transcriptional control of the pvdS iron starvation sigma factor gene by the master regulator of sulfur metabolism CysB in Pseudomonas aeruginosaENVIRONMENTAL MICROBIOLOGY, Issue 6 2010Francesco Imperi Summary In the Gram-negative pathogen Pseudomonas aeruginosa, the alternative sigma factor PvdS acts as a key regulator of the response to iron starvation. PvdS also controls P. aeruginosa virulence, as it drives the expression of a large set of genes primarily implicated in biogenesis and transport of the pyoverdine siderophore and synthesis of extracellular factors, such as protease PrpL and exotoxin A. Besides the ferric uptake regulatory protein Fur, which shuts off pvdS transcription under iron-replete conditions, no additional regulatory factor(s) controlling the pvdS promoter activity have been characterized so far. Here, we used the promoter region of pvdS as bait to tentatively capture, by DNA-protein affinity purification, P. aeruginosa proteins that are able to bind specifically to the pvdS promoter. This led to the identification and functional characterization of the LysR-like transcription factor CysB as a novel regulator of pvdS transcription. The CysB protein directly binds to the pvdS promoter in vitro and acts as a positive regulator of PvdS expression in vivo. The absence of a functional CysB protein results in about 50% reduction of expression of PvdS-dependent virulence phenotypes. Given the role of CysB as master regulator of sulfur metabolism, our findings establish a novel molecular link between the iron and sulfur regulons in P. aeruginosa. [source] Sulfide : quinone oxidoreductase (SQR) from the lugworm Arenicola marina shows cyanide- and thioredoxin-dependent activityFEBS JOURNAL, Issue 6 2008Ursula Theissen The lugworm Arenicola marina inhabits marine sediments in which sulfide concentrations can reach up to 2 mm. Although sulfide is a potent toxin for humans and most animals, because it inhibits mitochondrial cytochrome c oxidase at micromolar concentrations, A. marina can use electrons from sulfide for mitochondrial ATP production. In bacteria, electron transfer from sulfide to quinone is catalyzed by the membrane-bound flavoprotein sulfide : quinone oxidoreductase (SQR). A cDNA from A. marina was isolated and expressed in Saccharomyces cerevisiae, which lacks endogenous SQR. The heterologous enzyme was active in mitochondrial membranes. After affinity purification, Arenicola SQR isolated from yeast mitochondria reduced decyl-ubiquinone (Km = 6.4 ,m) after the addition of sulfide (Km = 23 ,m) only in the presence of cyanide (Km = 2.6 mm). The end product of the reaction was thiocyanate. When cyanide was substituted by Escherichia coli thioredoxin and sulfite, SQR exhibited one-tenth of the cyanide-dependent activity. Six amino acids known to be essential for bacterial SQR were exchanged by site-directed mutagenesis. None of the mutant enzymes was active after expression in yeast, implicating these amino acids in the catalytic mechanism of the eukaryotic enzyme. [source] A Graphene Oxide,Streptavidin Complex for Biorecognition , Towards Affinity PurificationADVANCED FUNCTIONAL MATERIALS, Issue 17 2010Zunfeng Liu Abstract In our postgenomic era, understanding of protein-protein interactions by characterizing the structure of the corresponding protein complex is becoming increasingly important. An important problem is that many protein complexes are only stable for a few minutes. Dissociation will occur when using the typical, time-consuming purification methods such as tandem affinity purification and multiple chromatographic separations. Therefore, there is an urgent need for a quick and efficient protein-complex purification method for 3D structure characterization. The graphene oxide (GO)·streptavidin complex is prepared via a GO·biotin·streptavidin strategy and used for affinity purification. The complex shows a strong biotin recognition capability and an excellent loading capacity. Capturing biotinylated DNA, fluorophores and Au nanoparticles on the GO·streptavidin complexes demonstrates the usefulness of the GO·streptavidin complex as a docking matrix for affinity purification. GO shows a high transparency towards electron beams, making it specifically well suited for direct imaging by electron microscopy. The captured protein complex can be separated via a filtration process or even via on-grid purification and used directly for single-particle analysis via cryo-electron microscopy. Therefore, the purification, sample preparation, and characterization are rolled into one single step. [source] Alu-DNA repeat-binding protein p68 is a part of Alu-RNA containing ,-RNPFEBS JOURNAL, Issue 8 2000Dmitry V. Lukyanov An Alu-DNA repeat-binding protein with a molecular mass of 68 kDa (p68) is identified in the somatic human cell nucleoplasm. Gel mobility shift assay (GMSA), South-western blotting and affinity purification on DNA attached to the carrier were used in the identification. GMSA revealed multiple complexes with the exponential dependence of their relative mobility. A narrow binding site of the p68 was revealed using synthetic oligonucleotides. It is located between the A-box and B-box of the RNA polymerase III promoter and is identical to that reported for the Alu-binding protein from human spermatozoids. The same narrow binding site, the similarity of the isolation procedure from germ and somatic cells, and similar binding properties and molecular masses suggest homology of the two proteins. Antibodies raised against Alu-protein complexes led to hypershift of the complexes in GMSA and stained p68 in active fractions in human spermatozoids and in Alu-RNA-containing ,-RNP particles. Immunofluorescence of a HeLa cell monolayer revealed an intranuclear dot pattern with the dots corresponding to euchromatin areas and some dots located at the cell periphery in the cytoplasm. ,-RNP particles bound Alu-DNA in vitro and contained p68 as shown using the immunogold procedure. Alu-DNA binding activity was revealed in cytoplasm as well as in nucleoplasm. The possible nature of the main Alu-DNA binding protein and its involvement in the particle structure are discussed. [source] RANKL Treatment Releases the Negative Regulation of the Poly(ADP-Ribose) Polymerase-1 on Tcirg1 Gene Expression During Osteoclastogenesis,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2006Guillaume E Beranger Abstract The Tcirg1 gene encodes the osteoclast-specific a3 isoform of the V-ATPase a subunit. Using the mouse osteoclastic model RAW264.7 cells, we studied Tcirg1 gene expression, and we identified PARP-1 as a transcriptional repressor negatively regulated by RANKL during osteoclastogenesis. Introduction: The TCIRG1 gene encodes the a3 isoform of the V-ATPase a subunit, and mutations at this locus account for ,60% of infantile malignant osteopetrosis cases. Using RAW264.7 cells as an osteoclastic differentiation model, we undertook a transcriptional study of the mouse Tcirg1 gene focused on the 4-kb region upstream of the transcription starting point. Materials and Methods: The promoter activity of serial-deletion fragments of the Tcirg1 gene promoter was monitored throughout the RAW264.7 cell differentiation process. We next performed EMSA, UV cross-linking, affinity purification, mass spectrometry analysis, gel supershift, and siRNA transfection experiments to identify the factor(s) interacting with the promoter. Results: The ,3946/+113 region of the mouse Tcirg1 gene displayed a high basal promoter activity, which was enhanced by RANKL treatment of RAW264.7 cells. Constructs deleted up to ,1589 retained this response to RANKL. A deletion up to ,1402 induced a 3-fold enhancement of the basal activity, whereas RANKL response was not affected. EMSA experiments led us to identify within the ,1589/,1402 region, a 10-nucleotide sequence, which bound a nuclear protein present in nondifferentiated RAW264.7 cells. This interaction was lost using nuclear extracts derived from RANKL-treated cells. Affinity purification followed by mass spectrometry analysis and gel supershift assay allowed the identification of poly(ADP-ribose) polymerase-1 (PARP-1) as this transcriptional repressor, whereas Western blot experiments revealed the cleavage of the DNA-binding domain of PARP-1 on RANKL treatment. Finally, both PARP-1 depletion after siRNA transfection and RAW264.7 cell treatment by an inhibitor of PARP-1 activity induced an increase of a3 mRNA expression. Conclusions: We provide evidence that the basal transcription activity of the Tcirg1 gene is negatively regulated by the binding of PARP-1 protein to its promoter region in mouse pre-osteoclast. On RANKL treatment, PARP-1 protein is cleaved and loses its repression effect, allowing an increase of Tcirg1 gene expression that is critical for osteoclast function. [source] Tristetraprolin recruits functional mRNA decay complexes to ARE sequencesJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2007Heidi H. Hau Abstract AU-rich elements (AREs) in the 3, untranslated region (UTR) of numerous mammalian transcripts function as instability elements that promote rapid mRNA degradation. Tristetraprolin (TTP) is an ARE-binding protein that promotes rapid mRNA decay through mechanisms that are poorly understood. A 31 nucleotide ARE sequences from the TNF-alpha 3, UTR promoted TTP-dependent mRNA decay when it was inserted into the 3, UTR of a beta-globin reporter transcript, indicating that this short sequence was sufficient for TTP function. We used a gel shift assay to identify a TTP-containing complex in cytoplasmic extracts from TTP-transfected HeLa cells that bound specifically to short ARE sequences. This TTP-containing complex also contained the 5,,3, exonuclease Xrn1 and the exosome component PM-scl75 because it was super-shifted with anti-Xrn1 or anti-PMscl75 antibodies. RNA affinity purification verified that these proteins associated specifically with ARE sequences in a TTP-dependent manner. Using a competition binding assay, we found that the TTP-containing complex bound with high affinity to short ARE sequences from GM-CSF, IL-3, TNF-alpha, IL-2, and c-fos, but did not bind to a U-rich sequence from c-myc, a 22 nucleotide poly U sequence or a mutated GM-CSF control sequence. High affinity binding by the TTP-containing complex correlated with TTP-dependent deadenylation and decay of capped, polyadenylated transcripts in a cell-free mRNA decay assay, suggesting that the TTP-containing complex was functional. These data support a model whereby TTP functions to enhance mRNA decay by recruiting components of the cellular mRNA decay machinery to the transcript. J. Cell. Biochem. 100: 1477,1492, 2007. © 2006 Wiley-Liss, Inc. [source] PURIFICATION OF AMYLASE FROM TILAPIA BY MAGNETIC PARTICLEJOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 1 2010MING CHANG WU ABSTRACT Recent development in magnetic carrier technology involves the use of nonmagnetic substrates attached to superparamagnetic particles forming functionally modified magnetic support to isolate a particular enzyme in a controllable magnetic field. In this study, the superparamagnetic particles were modified by epichlorohydrin and other agents to cross-link with starch to form the purification support. This affinity support was able to bind the amylase and was used in the purification of amylase from Taiwan tilapia. After ammonium sulfate precipitation of amylase from Taiwan tilapia, the modified superparamagnetic particles were able to purify the crude amylase by 20.78-fold with recovery of activity of 75.6%. The molecular weight of the amylase was estimated to be 66.1 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both crude and purified amylase reached an optimum at a pH of 8.0 and temperature of 50C, and the enzyme was stable between 20 and 50C. PRACTICAL APPLICATIONS Because of the rapid development of high technology such as carrier supports for enzyme purification, the development, research and application of magnetic carriers are timely needed. The present study demonstrated that the affinity superparamagnetic particles could be used as a carrier support to absorb and purify the amylase and that technology of affinity purification can be widely used in protein purification. Compared with the traditional chromatography used in the purification of proteins, this novel affinity superparamagnetic particle technology is rapid, has low operation cost, requires simple facilities, and involves easy separation and recovery of the enzymes. [source] Glycan side chains on naturally presented MHC class II ligandsJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2005Jörn Dengjel Abstract The molecular characterization of unknown naturally presented major histocompatibility complex (MHC) class II glycopeptides carrying complex glycans has so far not been achieved, reflecting the different fragmentation characteristics of sugars and peptides in mass spectrometric analysis. Human leukocyte antigen (HLA)-DR-bound peptides were isolated by affinity purification, separated via high performance liquid chromatography and analyzed by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. We were able to identify two naturally processed MHC class II ligands, CD53122,136 and CD53121,136, carrying complex N -linked glycan side chains by a combination of in-source and collision-induced fragmentation on a quadrupole time-of-flight tandem mass spectrometer. Copyright © 2005 John Wiley & Sons, Ltd. [source] Biomimetic affinity purification of cardiotoxin and its pharmacological effects on the nervous system,JOURNAL OF MOLECULAR RECOGNITION, Issue 3 2008Dexian Dong Abstract Cobra venom is a very precious natural resource. The traditional method for purification of cardiotoxin from cobra venom is a multi-step, high cost, and low recovery procedure. By molecular modeling and docking with SYBYL software, we designed and synthesized an affinity ligand, m-aminobenzoic acid, for high efficiency purification of this therapeutically useful Chinese cobra venom cardiotoxin. The one-step recovery of cardiotoxin reached 64% and the purity reached 92% upon purification. The binding capacity of this synthetic ligand was 9.1,mg cardiotoxin/g moist weight gel and the affinity constant for cardiotoxin was 5.5,×,103,M,1. Unlike a natural affinity ligand, this synthetic ligand is highly stable, and has great potential for industrial scale production of cardiotoxin. In addition, we examined the effects of cardiotoxin on the nervous system in a mouse model. Results showed that cardiotoxin could maintain analgesic effects for 120,min with a dose of less than 0.06,mg/kg (2.8% of the LD50). Administration of 0.12,mg/kg cardiotoxin could improve scopolamine impairments of memory in mice. These results suggest that cardiotoxin may be a potential drug for nervous system diseases. Copyright © 2008 John Wiley & Sons, Ltd. [source] Utilizing a library of synthetic affinity ligands for the enrichment, depletion and one-step purification of leech proteinsJOURNAL OF MOLECULAR RECOGNITION, Issue 3 2008Dexian Dong Abstract Although the concept of affinity purification using synthetic ligands had been utilized for many years, there are few articles related to this research area, and they focus only on the affinity purification of specific protein by a defined library of synthetic ligands. This study presents the design and construction of a 700-member library of synthetic ligands in detail. We selected 297 ligand columns from a 700-member library of synthetic ligands to screen leech protein extract. Of the 297, 154 columns had an enrichment effect, 83 columns had a depletion effect, 36 columns had a one-step purification effect, and 58 columns had a one-step purification via flowthrough effect. The experimental results achieved by this large library of affinity ligands provide solid convincing data for the theory that affinity chromatography could be used for the enrichment of proteins that are present in low abundance, the depletion of high abundance proteins, and one-step purification of special proteins. Copyright © 2008 John Wiley & Sons, Ltd. [source] Preparation of trypsin-immobilised chitosan beads and their application to the purification of soybean trypsin inhibitorJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2008Li Zhang Abstract BACKGROUND: Trypsin inhibitors are among the most important antinutritional factors in legumes. Recent research has shown that soybean trypsin inhibitor (SBTI) exhibits multiple bioactivities, but very few studies on the purification of SBTI are available. Enzymes are commonly used as biospecific ligands in affinity purification of their substrates or inhibitors. The aim of the present study was to prepare trypsin (EC 3.4.21.4)-immobilised chitosan beads and use them to purify trypsin inhibitor from soybean whey. RESULTS: Compared with free trypsin, the immobilised trypsin had higher thermal and pH stability. The adsorption ratio of SBTI from crude SBTI aqueous solution by trypsin-immobilised chitosan beads was 33.3%. The purified SBTI obtained by affinity chromatography was characterised by sodium dodecyl sulfate polyacrylamide gel electrophoresis as a single polypeptide band with an Mr of 8.3 kDa belonging to the Bowman,Birk family. CONCLUSION: Trypsin-immobilised chitosan beads were effectively used in the affinity separation of trypsin inhibitor from soybean seeds, thus indicating that immobilised trypsin may have practical application in the soybean-processing industry. The results of this study provide a background for further investigation of potential applications of soybean bioactive constituents in the areas of agriculture and food. Copyright © 2008 Society of Chemical Industry [source] A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludisMOLECULAR MICROBIOLOGY, Issue 1 2003Thomas J. Lie Summary Nitrogen assimilation in the methanogenic archaeon Methanococcus maripaludis is regulated by transcriptional repression involving a palindromic ,nitrogen operator' repressor binding sequence. Here we report the isolation of the nitrogen repressor, NrpR, from M. maripaludis using DNA affinity purification. Deletion of the nrpR gene resulted in loss of nitrogen operator binding activity in cell extracts and loss of repression of nif (nitrogen- fixation) and glnA (glutamine synthetase) gene expression in vivo. Genetic complementation of the nrpR mutation restored all functions. NrpR contained a putative N-terminal winged helix,turn,helix motif followed by two mutually homologous domains of unknown function. Comparison of the migration of NrpR in gel-filtration chromatography with its subunit molecular weight (60 kDa) suggested that NrpR was a tetramer. Several lines of evidence suggested that the level of NrpR itself is not regulated, and the binding affinity of NrpR to the nitrogen operator is controlled by an unknown mechanism. Homologues of NrpR were found only in certain species in the kingdom Euryarchaeota. Full length homologues were found in Methanocaldococcus jannaschii and Methanothermobacter thermoautotrophicus, and homologues lacking one or more of the three polypeptide domains were found in Archaeoglobus fulgidus, Methanopyrus kandleri, Methanosarcina acetivorans, and Methanosarcina mazei. NrpR represents a new family of regulators unique to the Euryarchaeota. [source] Single-step affinity purification of recombinant proteins using a self-excising module from Neisseria meningitidis FrpCPROTEIN SCIENCE, Issue 10 2008Lenka Sadilkova Abstract Purification of recombinant proteins is often a challenging process involving several chromatographic steps that must be optimized for each target protein. Here, we developed a self-excising module allowing single-step affinity chromatography purification of untagged recombinant proteins. It consists of a 250-residue-long self-processing module of the Neisseria meningitidis FrpC protein with a C-terminal affinity tag. The N terminus of the module is fused to the C terminus of a target protein of interest. Upon binding of the fusion protein to an affinity matrix from cell lysate and washing out contaminating proteins, site-specific cleavage of the Asp,Pro bond linking the target protein to the self-excising module is induced by calcium ions. This results in the release of the target protein with only a single aspartic acid residue added at the C terminus, while the self-excising affinity module remains trapped on the affinity matrix. The system was successfully tested with several target proteins, including glutathione-S-transferase, maltose-binding protein, ,-galactosidase, chloramphenicol acetyltransferase, and adenylate cyclase, and two different affinity tags, chitin-binding domain or poly-His. Moreover, it was demonstrated that it can be applied as an alternative to two currently existing systems, based on the self-splicing intein of Saccharomyces cerevisiae and sortase A of Staphylococcus aureus. [source] A new generation of protein display scaffolds for molecular recognitionPROTEIN SCIENCE, Issue 1 2006Ralf J. Hosse Abstract Engineered antibodies and their fragments are invaluable tools for a vast range of biotechnological and pharmaceutical applications. However, they are facing increasing competition from a new generation of protein display scaffolds, specifically selected for binding virtually any target. Some of them have already entered clinical trials. Most of these nonimmunoglobulin proteins are involved in natural binding events and have amazingly diverse origins, frameworks, and functions, including even intrinsic enzyme activity. In many respects, they are superior over antibody-derived affinity molecules and offer an ever-extending arsenal of tools for, e.g., affinity purification, protein microarray technology, bioimaging, enzyme inhibition, and potential drug delivery. As excellent supporting frameworks for the presentation of polypeptide libraries, they can be subjected to powerful in vitro or in vivo selection and evolution strategies, enabling the isolation of high-affinity binding reagents. This article reviews the generation of these novel binding reagents, describing validated and advanced alternative scaffolds as well as the most recent nonimmunoglobulin libraries. Characteristics of these protein scaffolds in terms of structural stability, tolerance to multiple substitutions, ease of expression, and subsequent applications as specific targeting molecules are discussed. Furthermore, this review shows the close linkage between these novel protein tools and the constantly developing display, selection, and evolution strategies using phage display, ribosome display, mRNA display, cell surface display, or IVC (in vitro compartmentalization). Here, we predict the important role of these novel binding reagents as a toolkit for biotechnological and biomedical applications. [source] Differential protein expression on the cell surface of colorectal cancer cells associated to tumor metastasisPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2010Jose Luis Luque-García Abstract Progression to metastasis is the critical point in colorectal cancer (CRC) survival. However, the proteome associated to CRC metastasis is very poorly understood at the moment. In this study, we used stable isotope labeling by amino acids in cell culture to compare two CRC cell lines: KM12C and KM12SM, representing poorly versus highly metastatic potential, to find and quantify the differences in protein expression, mostly at the cell surface level. After biotinylation followed by affinity purification, membrane proteins were separated by SDS-PAGE and analyzed using nanoflow LC-ESI-LTQ. A total of 291 membrane and membrane-associated proteins were identified with a p value<0.01, from which 60 proteins were found to be differentially expressed by more than 1.5-fold. We identified a number of cell signaling, CDs, integrins and other cell adhesion molecules (cadherin 17, junction plakoglobin (JUP)) among the most deregulated proteins. They were validated by Western blot, confocal microscopy and flow cytometry analysis. Immunohistochemical analysis of paired tumoral samples confirmed that these differentially expressed proteins were also altered in human tumoral tissues. A good correlation with a major abundance in late tumor stages was observed for JUP and 17-,-hydroxysteroid dehydrogenase type 8 (HSD17B8). Moreover, the combined increase in JUP, occludin and F11 receptor expression together with cadherin 17 expression could suggest a reversion to a more epithelial phenotype in highly metastatic cells. Relevant changes were observed also at the metabolic level in the pentose phosphate pathway and several amino acid transporters. In summary, the identified proteins provide us with a better understanding of the events involved in liver colonization and CRC metastasis. [source] Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thalianaPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 11 2009Ing-Feng Chang Abstract In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a "tandem affinity purification" tag and expressed in transgenic plants. Purified complexes were analyzed by tandem MS. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (i) Ion transport, such as a K+ channel (GORK), a Cl, channel (CLCg), Ca2+ channels belonging to the glutamate receptor family (1.2, 2.1, 2.9, 3.4, 3.7); (ii) hormone signaling, such as ACC synthase (isoforms ACS-6, -7 and -8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (iii) transcription, such as 7 WRKY family transcription factors; (iv) metabolism, such as phosphoenol pyruvate carboxylase; and (v) lipid signaling, such as phospholipase D (, and ,). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300. [source] Purification of the Prep1 interactome identifies novel pathways regulated by Prep1PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 15 2007Víctor M. Díaz Abstract Prep1 homeodomain transcription factor interacts with Pbx proteins to regulate oculogenesis, angiogenesis, and hematopoiesis in mice. To isolate new Prep1 interactors competing or copurifying with Pbx, we identified proteins copurified with Prep1-TAP by tandem affinity purification (TAP). Prep1,TAP was fully functional and allowed the isolation of a Prep1 proteome from cytoplasm and nucleus, but most interactors were nuclear. The Prep1,TAP complex included Pbx1b, Pbx2, and other nonhomeodomain proteins: p160 Myb-binding protein (p160), ,-actin, NMMHCIIA. [source] Landscape of the hnRNP K protein,protein interactomePROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 8 2006Micha, Mikula Abstract The heterogeneous nuclear ribonucleoprotein K is an ancient RNA/DNA-binding protein that is involved in multiple processes that compose gene expression. The pleiotropic action of K protein reflects its ability to interact with different classes of factors, interactions that are regulated by extracellular signals. We used affinity purification and MS to better define the repertoire of K protein partners. We identified a large number of new K protein partners, some typically found in subcellular compartments, such as plasma membrane, where K protein has not previously been seen. Electron microscopy showed K protein in the nucleus, cytoplasm, mitochondria, and in vicinity of plasma membrane. These observations greatly expanded the view of the landscape of K protein,protein interaction and provide new opportunities to explore signal transduction and gene expression in several subcellular compartments. [source] A modified tandem affinity purification strategy identifies cofactors of the Drosophila nuclear receptor,dHNF4PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 3 2006Ping Yang Abstract With the completion of numerous genome projects, new high-throughput methods are required to ascribe gene function and interactions. A method proven successful in yeast for protein interaction studies is tandem affinity purification (TAP) of native protein complexes followed by MS. Here, we show that TAP, using Protein,A and CBP tags, is not generally suitable for the purification and identification of proteins from tissues. A head-to-head comparison of tags shows that two others, FLAG and His, provide protein yields from Drosophila tissues that are an order of magnitude higher than Protein,A and CBP. FLAG-His purification worked sufficiently well so that two cofactors of the Drosophila nuclear receptor protein,dHNF4 could be purified from whole animals. These proteins, Hsc70 and Hsp83, are important chaperones and cofactors of other nuclear receptor proteins. However, this is the first time that they have been shown to interact with a non-steroid binding nuclear receptor. We show that the two proteins increase the ability of dHNF4 to bind DNA in,vitro and to function in,vivo. The tags and approaches developed here will help facilitate the routine purification of proteins from complex cells, tissues and whole organisms. [source] Selective analysis of phosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 16 2001Maceij Adamczyk A new method combining chemical modification and affinity purification is described for the characterization of serine and threonine phosphopeptides in proteins. The method is based on the conversion of phosphoserine and phosphothreonine residues to S -(2-mercaptoethyl)cysteinyl or ,-methyl- S -(2-mercaptoethyl)cysteinyl residues by ,-elimination/1,2-ethanedithiol addition, followed by reversible biotinylation of the modified proteins. After trypsin digestion, the biotinylated peptides were affinity-isolated and enriched, and subsequently subjected to structural characterization by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Database searching allowed for automated identification of modified residues that were originally phosphorylated. The applicability of the method is demonstrated by the identification of all known phosphorylation sites in a mixture of ,-casein, ,-casein, and ovalbumin. The technique has potential for adaptations to proteome-wide analysis of protein phosphorylation. Copyright © 2001 John Wiley & Sons, Ltd. [source] Protein,protein interactions of tandem affinity purification-tagged protein kinases in riceTHE PLANT JOURNAL, Issue 1 2006Jai S. Rohila Summary Forty-one rice cDNAs encoding protein kinases were fused to the tandem affinity purification (TAP) tag and expressed in transgenic rice plants. The TAP-tagged kinases and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by mass spectrometry. Ninety-five percent of the TAP-tagged kinases were recovered. Fifty-six percent of the TAP-tagged kinases were found to interact with other rice proteins. A number of these interactions were consistent with known protein complexes found in other species, validating the TAP-tag method in rice plants. Phosphorylation sites were identified on four of the kinases that interacted with either 14-3-3 proteins or cyclins. [source] Glycan profiling of anti,citrullinated protein antibodies isolated from human serum and synovial fluidARTHRITIS & RHEUMATISM, Issue 6 2010Hans U. Scherer Objective Anti,citrullinated protein antibodies (ACPA) exhibit unique specificity for rheumatoid arthritis. However, it is incompletely understood whether and how ACPA contribute to disease pathogenesis. The Fc part of human IgG carries 2 N-linked glycan moieties that are crucial for the structural stability of the antibody and that modulate both its binding affinity to Fc, receptors and its ability to activate complement. We undertook this study to analyze Fc glycosylation of IgG1 ACPA in serum and synovial fluid (SF) in order to further characterize the immune response to citrullinated antigens. Methods ACPA were isolated by affinity purification using cyclic citrullinated peptides as antigen. IgG1 Fc glycosylation was analyzed by mass spectrometry. ACPA IgG1 glycan profiles were compared with glycan profiles of total serum IgG1 obtained from 85 well-characterized patients. Glycan profiles of paired SF and serum samples were available from 11 additional patients. Results Compared with the pool of serum IgG1, ACPA IgG1 lacked terminal sialic acid residues. In SF, ACPA were highly agalactosylated and lacked sialic acid residues, a feature that was not detected for total SF IgG1. Moreover, differential ACPA glycan profiles were detected in rheumatoid factor (RF),positive and RF-negative patients. Conclusion ACPA IgG1 exhibit a specific Fc-linked glycan profile that is distinct from that of total serum IgG1. Moreover, Fc glycosylation of ACPA differs markedly between SF and serum. Since Fc glycosylation directly affects the recruitment of Fc-mediated effector mechanisms, these data could further our understanding of the contribution of ACPA to disease pathogenesis. [source] Angiopoietin 1 directly induces destruction of the rheumatoid joint by cooperative, but independent, signaling via ERK/MAPK and phosphatidylinositol 3-kinase/AktARTHRITIS & RHEUMATISM, Issue 7 2007Akira Hashiramoto Objective To determine whether angiopoietin 1 (Ang-1) potentiates overgrowth of the synovium and joint degradation in rheumatoid arthritis (RA), and to clarify the cell-signaling mechanisms of Ang-1 in the rheumatoid joint. Methods Expression of Ang-1, TIE-2 (a receptor for Ang-1), and matrix metalloproteinase 3 (MMP-3) was studied by immunohistochemistry. Activation of the ERK/MAPK and phosphatidylinositol (PI) 3-kinase/Akt pathways and of NF-,B was determined by Western blotting and an NF-,B p65 DNA binding activity assay, respectively. Induction of apoptosis was evaluated by nuclear staining, cell viability assay, and Western blotting of caspases. Synovial cell migration was evaluated by actin polymerization, Western blotting of Rho family proteins, and affinity purification with Rhotekin-Rho and p21-activated kinase 1. Matrix degradation was examined by induction of proMMP-3 secretion from synovial cells followed by in vitro cartilaginous matrix degradation assay. Results Ang-1 stimulated the ERK/MAPK and PI 3-kinase/Akt pathways in a cooperative but independent manner, which enhanced rheumatoid synovium overgrowth and joint destruction. In addition, Ang-1 activated NF-,B via Akt to promote cell growth, but also inhibited cell apoptosis via ERK and Akt. Ang-1 directly potentiated the extension of synovial cells in an ERK- and Akt-dependent manner by up-regulating Rho family proteins, which attenuated Rac signaling and led to membrane ruffling. Ang-1 induced proMMP-3 secretion from synovial cells, which resulted in direct degradation of the cartilaginous matrix. Conclusion Ang-1 stimulates the ERK/MAPK and PI 3-kinase/Akt pathways cooperatively, but in a manner independent of each other, to directly potentiate synovium overgrowth and joint destruction in RA. In addition to inflammatory cytokines, Ang-1/TIE-2 signaling appears to be an independent factor that contributes to the destruction of the rheumatoid joint. [source] |