Home About us Contact | |||
Affinity Chromatography (affinity + chromatography)
Kinds of Affinity Chromatography Selected AbstractsModeling of Monolith-Supported Affinity ChromatographyBIOTECHNOLOGY PROGRESS, Issue 3 2004Francisco J. Montes Sanchez Ceramic monoliths have been used successfully as active support for affinity chromatography ( 1). A mathematical model was developed to simulate the adsorption-elution experimental behavior of asparaginase in an agarose-coated monolith support. The computer-based model allows precise determination of experimental parameters. Because of the simple geometry of ceramic monoliths used as support, the mathematical model can be used to design adsorption/elution cycles for the large throughput separation of biomolecules. [source] Screening of Protein-Ligand Interactions by Affinity ChromatographyBIOTECHNOLOGY PROGRESS, Issue 2 2003Carlos D. García This paper examines affinity chromatography (AC) as an alternative tool for the determination of protein-ligand interactions for the particular case in which the ligand is the same protein. The methodology is less labor-intensive and more sample-efficient than traditional methods used to measure the second virial coefficient ( B22), a parameter commonly used to evaluate protein-protein interactions. The chromatographic capacity factor ( k,) was studied for lysozyme and equine serum albumin for a wide range of experimental solution conditions such as crystallizing agent concentration, protein concentration and pH. Parallel experiments using AC to determine k, and static light scattering (SLS) to determine B22 showed that the two parameters were highly correlated. Two different column volumes (,1 and ,0.1 mL) were tested and gave essentially the same values for k,, showing the feasibility of miniaturization. [source] Use of Dye Affinity Chromatography for the Purification of Aerococcusviridans Lactate OxidaseBIOTECHNOLOGY PROGRESS, Issue 3 2002Sergio A. Streitenberger Lactate oxidase was purified from Aerococcus viridans ( A. viridans) by dye affinity chromatography and FPLC ion exchange chromatography. The lactate oxidase could be purified by comparatively simple procedures, the purification achieved from a crude extract of A.viridans was 41-fold with a specific activity of 143 units/(mg of protein). The purified enzyme was a l - lactate oxidase, which catalyses the conversion of l -lactate in the presence of molecular oxygen to pyruvate and H2O2. This purified lactate oxidase showed an apparent molecular mass of 48 200 in SDS-PAGE and the native molecular weight, as estimated by FPLC gel filtration, was 187 300. This molecular weight indicates that lactate oxidase exists in tetrameric form after gel filtration. To differing degrees, all the triazine dyes tested were inhibitors of lactate oxidase, solutions of free triazine dyes showing an inhibition mechanism which was both time- and pH-dependent. [source] Immobilized Metal Affinity Chromatography without Chelating Ligands: Purification of Soybean Trypsin Inhibitor on Zinc Alginate BeadsBIOTECHNOLOGY PROGRESS, Issue 1 2002Munishwar N. Gupta Immobilized metal affinity chromatography (IMAC) is a widely used technique for bioseparation of proteins in general and recombinant proteins with polyhistidine fusion tags in particular. An expensive and critical step in this process is coupling of a chelating ligand to the chromatographic matrix. This chelating ligand coordinates metal ions such as Cu2+, Zn2+, and Ni2+, which in turn bind proteins. The toxicity of chemicals required for coupling and their slow release during the separation process are of considerable concern. This is an important issue in the context of purification of proteins/enzymes which are used in food processing or pharmaceutical purposes. In this work, a simpler IMAC design is described which should lead to a paradigm shift in the application of IMAC in separation. It is shown that zinc alginate beads (formed by chelating alginate with Zn2+ directly) can be used for IMAC. As "proof of concept", soybean trypsin inhibitor was purified 18-fold from its crude extract with 90% recovery of biological activity. The dynamic binding capacity of the packed bed was 3919 U mL -1, as determined by frontal analysis. The media could be regenerated with 8 M urea and reused five times without any appreciable loss in its binding capacity. [source] Separation of Pure and Immunoreactive Virus-Like Particles Using Gel Filtration Chromatography Following Immobilized Metal Ion Affinity ChromatographyBIOTECHNOLOGY PROGRESS, Issue 2 2001Yu-Shen Cheng A purification process was developed to obtain highly pure rVP2H particles, formed by a structural protein (VP2) of the infectious bursal disease virus (IBDV) with six additional histidine residues at its C-terminus. The ultimate goal was the development of an efficient subunit vaccine against IBDV infection. The particles within the infected High-Five (Hi-5) cell lysates were partially purified by employing immobilized metal ion (Ni2+) affinity chromatography (IMAC). The initial step could recover approximately 85% of immunoreactive rVP2H proteins but failed to separate the rVP2H particles from the free rVP2H proteins or its degraded products. To separate the particulate form from the free form of rVP2H, an additional step was added, which used either gel filtration chromatography or CsCl density gradient ultracentrifugation. Both were able to produce extremely pure rVP2H particles with a buoyant density close to 1.27 g/cm3. However, the former method can process a larger sample volume than does the latter. By integrating IMAC and gel filtration chromatography, 1 mg of extremely pure rVP2H particles was routinely obtained from a 500 mL Hi-5 cell culture broth. The separation of the particulate form from the free form of rVP2H proteins exposes their respective immunogenicity to induce the virus-neutralizing antibodies and the ability to protect chickens from IBDV infection. Additionally, the abundant quantities of pure rVP2H particles coupled with their uniform dimensions facilitates an understanding of higher order structure of the immunogenic particles and can therefore result in improved vaccines against the virus. [source] A Generic Approach to Monofunctionalized Protein-Like Gold Nanoparticles Based on Immobilized Metal Ion Affinity ChromatographyCHEMBIOCHEM, Issue 4 2006Raphaël Lévy Dr. Control of a peptide-capped gold-nanoparticle (NP) surface with single-molecule accuracy is demonstrated. Immobilized metal ion affinity chromatography (IMAC) has been used to separate peptide-capped NPs as a function of the number of molecular labels (see scheme). The method described in this paper is simple, quantitative and directly applicable to the preparation of monofunctionalized nanoparticles with any water-soluble chemical moieties. [source] Potential for Using Histidine Tags in Purification of Proteins at Large ScaleCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 11 2005V. Gaberc-Porekar Abstract Attachment of oligo-histidine tag (His-tag) to the protein N- or C-terminus is a good example of early and successful protein engineering to design a unique and generalized purification scheme for virtually any protein. Thus relatively strong and specific binding of His-tagged protein is achieved on an Immobilized Metal-Ion Affinity Chromatography (IMAC) matrix. Most popular hexa-histidine tag and recently also deca-histidine tag are used in combination with three chelating molecules: iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), and carboxymethyl aspartic acid (CM-Asp), covalently attached to the chromatographic matrix. The following combinations with divalent metal ions are preferentially used: (Cu, Zn, Ni, Co)-IDA, Ni-NTA, and Co-CM-Asp. At large scale, regarding cost and product purity, a decisive step is precise and efficient cleavage of His-tag by the cleavage enzyme. Two-step IMAC followed by a polishing step appears to be a minimum but still realistic as an approach to generic technology also for more demanding products. Possible drawbacks in using His-tags and IMAC, such as leaching of metal ions, inefficient cleavage, and batch-to-batch reproducibility must be carefully evaluated before transferred to large scale. Although a great majority of reports refer to small laboratory scale isolations for research purposes it appears there is much higher potential for more extensive use of His-tags and IMAC at large scale than currently documented. [source] A Method for the Rapid Discovery of Naturally Occurring Products by Proteins Immobilized on Magnetic Beads and Reverse Affinity ChromatographyCHEMISTRY - AN ASIAN JOURNAL, Issue 12 2009Midori Abstract A highly efficient screening method for naturally occurring products that bind to a specific target protein was demonstrated by using hVDR magnetic beads. The native ligand 1,,25(OH)2 VD3 (1) was selectively bound by hVDR magnetic beads when present in a mixture of natural compounds. Furthermore, this method was shown to be applicable to the identification of natural products that interact with a specific protein immobilized on the beads from an extract of a natural resource. Two new natural compounds were isolated by this method. This approach will be helpful for the discovery of novel, naturally occurring products that bind to specific target proteins. This method has the further advantages that it can identify the HPLC peak corresponding to the target compound for isolation, as well as provide important UV, CD, or MS profile information. [source] Bioaffinity chromatography on monolithic supportsJOURNAL OF SEPARATION SCIENCE, JSS, Issue 3 2010Kishore K. R. Tetala Abstract Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bioaffinity chromatography (including immunochromatography) is summarized and discussed. After giving an introduction into affinity chromatography, information on different biomolecules (antibodies, enzymes, lectins, aptamers) that can act as ligands in bioaffinity chromatography is presented. Subsequently, the history of monoliths, their advantages, preparation and formats (disks, capillaries and microchips) as well as ligand immobilization techniques are mentioned. Finally, analytical and preparative applications of bioaffinity chromatography on monoliths are presented. During the last four years 37 papers appeared. Protein A and G are still most often used as ligands for the enrichment of immunoglobulins. Antibodies and lectins remain popular for the analysis of mainly smaller molecules and saccharides, respectively. The highly porous cryogels modified with ligands are applied for the sorting of different cells or bacteria. New is the application of aptamers and phages as ligands on monoliths. Convective interaction media (epoxy CIM disks) are currently the most used format in monolithic bioaffinity chromatography. [source] Isatin-binding proteins of rat and mouse brain: Proteomic identification and optical biosensor validationPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 1 2010Olga Buneeva Abstract Isatin (indole-2,3-dione) is an endogenous indole that has a distinct and discontinuous distribution in the brain and in other mammalian tissues and body fluids. Its output is increased under conditions of stress and anxiety. Isatin itself and its analogues exhibit a wide range of pharmacological activities but its specific biological targets still are not well characterized. Affinity chromatography of Triton X-100 lysates of soluble and particulate fractions of mouse and rat whole brain homogenates on 5-aminocaproyl-isatin-Sepharose followed by subsequent proteomic analysis resulted in identification of 65 and 64 individual proteins, respectively. Isatin-binding capacity of some of the identified proteins has been validated in an optical biosensor study using a Biacore 3000 optical biosensor, 5-aminocarproyl-isatin, and 5-aminoisatin as the affinity ligands. The Kd values (of 0.1,20,,M) obtained during the optical biosensor experiments were consistent with the range of Kd values recently reported for [3H]isatin binding to brain sections. Although the number of isatin-binding proteins identified in the mouse and rat brain was similar, only 21 proteins (about one-third) were identical in the two species. This may be one reason for the differences in isatin effects in rats and mice reported in the literature. [source] Expression Pattern, Ethanol-Metabolizing Activities, and Cellular Localization of Alcohol and Aldehyde Dehydrogenases in Human Pancreas: Implications for Pathogenesis of Alcohol-Induced Pancreatic InjuryALCOHOLISM, Issue 6 2009Chien-Ping Chiang Background:, Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are major enzymes responsible for metabolism of ethanol. Genetic polymorphisms of ADH1B, ADH1C, and ALDH2 occur among racial populations. The metabolic effect and metabolites contribute to pathogenesis of pancreatic injury. The goal of this study was to determine the functional expressions and cellular localization of ADH and ALDH families in human pancreas. Methods:, Fifty five surgical specimens of normal pancreas as well as 15 samples each for chronic pancreatitis and pancreatic cancer from archival formalin-fixed paraffin-embedded tissue specimens were investigated. Class-specific antibodies were prepared by affinity chromatographies from rabbit antisera raised against recombinant human ADH1C1, ADH4, ADH5, ADH7, ALDH1A1, ALDH2, and ALDH3A1. The isozyme expression patterns of ADH/ALDH were identified by isoelectric focusing, and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting, and the cellular localizations were detected by immunohistochemistry and histochemistry. Results:, At 33 mM ethanol, pH 7.5, the activities were significantly different between allelic phenotypes of ADH1B. The activity of ALDH2-inactive phenotypes was slightly lower than ALDH2-active phenotypes at 200 ,M acetaldehyde. The protein contents were in the following decreasing order: ALDH1A1, ALDH2, ADH1, and ADH5. ADH1B was detected in the acinar cells and ADH1C in the ductular, islet, and stellate cells. The expression of ADH1C appeared to be increased in the activated pancreatic stellate cells in chronic pancreatitis and pancreatic cancer. Conclusions:, Alcohol dehydrogenase and ALDH family members are differentially expressed in the various cell types of pancreas. ADH1C may play an important role in modulation of activation of pancreatic stellate cells. [source] Chicken gizzard filamin, retina filamin and cgABP260 are respectively, smooth muscle-, non-muscle- and pan-muscle-type isoforms: Distribution and localization in musclesCYTOSKELETON, Issue 4 2005Kazuyo Ohashi Abstract We determined the full cDNA sequences of chicken gizzard filamin and cgABP260 (chicken gizzard actin-binding protein 260). The primary and secondary structures predicted by these sequences were similar to those of chicken retina filamin and human filamins. Like mammals, chickens have 3 filamin isoforms. Comparison of their amino acid sequences indicated that gizzard filamin, retina filamin, and cgABP260 were the counterparts of human FLNa (filamin a), b, and c, respectively. Antibodies against the actin-binding domain (ABD) of these 3 filamin isoforms were raised in rabbits. Using immunoabsorption and affinity chromatography, we prepared the monospecific antibody against the ABD of each filamin. In immunoblotting, the antibody against the gizzard filamin ABD detected a single band in gizzard, but not in striated muscles or brain. In brain, only the antibody against the retina filamin ABD produced a strong single band. The antibody against the cgABP260 ABD detected a single peptide band in smooth, skeletal, and cardiac muscle. In immunofluorescence microscopy of muscular tissues using these antibodies, the antibody against the gizzard filamin ABD only stained smooth muscle cells, and the antibody against the retina filamin ABD strongly stained endothelial cells of blood vessels and weakly stained cells in connective tissue. The antibody against the cgABP260 ABD stained the Z-lines and myotendinous junctions of breast muscle, the Z-lines and intercalated disks of cardiac muscle, and dense plaques of smooth muscle. These findings indicate that chicken gizzard filamin, retina filamin, and cgABP260 are, respectively, smooth muscle-type, non-muscle-type, and pan-muscle-type filamin isoforms. Cell Motil. Cytoskeleton 61:214,225, 2005. © 2005 Wiley-Liss, Inc. [source] Cover Picture: Electrophoresis 21'2008ELECTROPHORESIS, Issue 21 2008Article first published online: 14 NOV 200 This issue has an emphasis on "Proteomics and Related Topics". It comprises 11 research articles including the "Fast Track" article on the topic of proteomics, glycoproteomics, proteins and peptides. The "Fast Track" article describes a CE-LIF detection-based assay for the simultaneous measurements of the electrophoretic mobility, catalytic activity and the variation of activity over time of the individual enzymes molecules of Escherichia coli beta-galactosidase. The remaining 10 research articles of the Emphasis deal with the development of sensitive fluorescent staining for proteomic analysis, depletion of high abundance proteins form human serum, lectin affinity chromatography in the identification of rat urinary glycoproteome, lab-on-chip screening strategy of mouse serum samples prior to proteomics analysis, identification of proteins from membrane preparations, capillary coating for CE of proteins, characterization of rabbit liver apothioneins by CE-ESI-MS, quantitative analysis of recombinant protein charge heterogeneity by imaging CIEF, dye staining and immunodetection of proteins on a PVDF membrane, and separation of multiphosphorylated peptide isomers by CZE. [source] Lectin-based electrophoretic analysis of the expression of the 35,kDa inter-,-trypsin inhibitor heavy chain H4 fragment in sera of patients with five different malignanciesELECTROPHORESIS, Issue 12 2008Emida Mohamed Abstract A 35,kDa glycoprotein whose abundance was previously demonstrated to be enhanced in sera of patients with endometrial adenocarcinoma (n,=,12), was isolated from pooled sera of three of the cancer patients using champedak galactose-binding lectin affinity chromatography in the present study. Subjecting it to 2-DE and MS/MS, the glycoprotein was identified as the O -glycosylated fragment of inter-,-trypsin inhibitor heavy chain H4 (ITIH4). When compared to control sera (n,=,17), expression of the 35,kDa ITIH4 cleavage fragment was demonstrated to be significantly enhanced in sera of patients with breast carcinoma (n,=,10), epithelial ovarian carcinoma (n,=,10), and germ cell ovarian carcinoma (n,=,10) but not in patients with nasopharyngeal carcinoma (n,=,13) and osteosarcoma (n,=,7). The lectin-based electrophoretic bioanalytical method adopted in the present study may be used to assess the physiological relevance of ITIH4 fragmentation and its correlation with different malignancies, their stages and progression. [source] Capillary electrophoresis versus differential scanning calorimetry for the analysis of free enzyme versus enzyme-ligand complexes: In the search of the ligand-free status of cholinesterasesELECTROPHORESIS, Issue 2 2006Daniel Rochu Dr. Abstract Cholinesterases (ChEs) are highly efficient biocatalysts whose active site is buried in a deep, narrow gorge. The talent of CE to discover inhibitors in the gorge of highly purified preparations has fairly altered the meaning of a ChE ligand-free status. To attempt at a description of this one, we investigated the stability of Bungarus fasciatus acetylcholinesterase (AChE), alone or complexed with different inhibitors. Determination of midtransition temperature for thermal denaturation, using differential scanning calorimetry (DSC) and CE, provided conflicting results. Discrepancies strongly question the reality of a ligand-free AChE state. DSC allowed estimation of the stability of AChE-ligands complexes, and to rank the stabilizing effect of different inhibitors. CE acted as a detector of hidden ligands, provided that they were charged, reversibly bound, and thus dissociable upon action of electric fields. Then, CE allowed quantification of the stability of ligand-free AChE. CE and DSC providing each fractional and nonredundant information, cautious attention must be paid for actual estimation of the conformational stability of ChEs. Because inhibitors used in purification of ChEs by affinity chromatography are charged, CE remains a leading method to estimate enzyme stability and detect the presence of bound hidden ligands. [source] On-line concentration of peptides and proteins with the hyphenation of polymer monolithic immobilized metal affinity chromatography and capillary electrophoresisELECTROPHORESIS, Issue 11 2005Lingyi Zhang Abstract An iminodiacetic acid (IDA)-type adsorbent is prepared at the one end of a capillary by covalently bonding IDA to the monolithic rods of macroporous poly(glycidyl methacrylate,co -ethylene dimethacrylate). Cu(II) is later introduced to the support via the interaction with IDA. By this means, polymer monolithic immobilized metal affinity chromatography (IMAC) materials are prepared. With such a column, IMAC for on-line concentration and capillary electrophoresis (CE) for the subsequent analysis are hyphenated for the analysis of peptides and proteins. The reproducibility of such a column has been proved good with relative standard deviations (RSDs) of dead time of less than 5% for injection-to-injection and 12% for column-to-column (n = 3). Through application on the analysis of standard peptides and real protein samples, such a technique has shown promising in proteome study. [source] Microaffinity purification of proteins based on photolytic elution: Toward an efficient microbead affinity chromatography on a chipELECTROPHORESIS, Issue 3 2005Woo-Jae Chung Abstract A bead affinity chromatography system, which was based on the photolytic elution method, was integrated into a glass-silicon microchip to purify specific target proteins. CutiCore® beads, which were coupled with a photo-cleavable ligand, such as biotin and an RNA aptamer, were introduced into a filter chamber in the microchip. The protein mixture containing target protein labeled with fluorescein isothiocyanate (FITC) was then passed through the packed affinity beads in the microchamber by pressure-driven flow. During the process, the adsorbed protein on the bead was monitored by fluorescence. The concentrated target protein on the affinity bead was released by simple irradiation with UV light at a wavelength of 360 nm, and subsequently eluted with the phosphate buffer flow. The eluted target protein was quantitatively detected via the fluorescence intensity measurements at the downstream of the capillary connected to the outlet of the microchip. The microaffinity purification allowed for a successful method for the identification of specific target proteins from a protein mixture. In addition, the feasibility of this system for use as a diagnosis chip was demonstrated. [source] Integrated selective enrichment target , a microtechnology platform for matrix-assisted laser desorption/ionization-mass spectrometry applied on protein biomarkers in prostate diseasesELECTROPHORESIS, Issue 21-22 2004Simon Ekström Abstract The performance of a miniaturized sample processing platform for matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), manufactured by silicon microfabrication, called integrated selective enrichment target (ISET) technology was evaluated in a biological context. The ISET serves as both sample treatment device and MALDI-MS target, and contains an array of 96 perforated nanovials, which each can be filled with 40 nL of reversed-phase beads. This methodology minimizes the number of sample transfers and the total surface area available for undesired adsorption of the analytes in order to provide high-sensitivity analysis. ISET technology was successfully applied for characterization of proteins coisolated by affinity chromatography of prostate-specific antigen (PSA) from human seminal fluid. The application of ISET sample preparation enabled multiple analyses to be performed on a limited sample volume, which resulted in the discovery that prolactin inducible protein (PIP) was coisolated from the samples. [source] Improved ,-Glucanase Production by a Recombinant Escherichia coli Strain using Zinc-Ion Supplemented MediumENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 3 2007U. Beshay Abstract In order to investigate the suitability of different metal chelates for affinity chromatography, an expression vector was constructed. It contained a hybrid ,-glucanase as a model protein fused with a His6 -tag and a secretion cassette providing the ability to secrete ,-glucanase into the culture medium. Supplementation of zinc to the medium led to a rapidly increased expression and release of the target protein into the cultivation medium. Results in respect to the supplementation of the commonly used Terrific Broth "TB-medium" with different metal ions are reported with special emphasis on the influence of zinc ions. A concentration of zinc ions in the order of about 0.175 mM led to optimal results. Batch cultivation under well-controlled conditions showed that the growth behavior did not change significantly by adding zinc ions. Growth in a stirred tank bioreactor was much faster in unsupplemented TB-medium compared to shake flask experiments leading to a much higher biomass concentration (15,g/L instead of 3,g/L). The secretion of ,-glucanase under theses conditions started at the transition into the stationary phase and increased to yield an extracellular activity of 1350,U/mL at the end of the fermentation process. An even higher yield of extracellular ,-glucanase (2800,U/mL) was reached when the fermentation was carried out with TB-medium supplemented with 0.175,mM ZnSO4. [source] Recombinant expression of an insulin-like peptide 3 (INSL3) precursor and its enzymatic conversion to mature human INSL3FEBS JOURNAL, Issue 18 2009Xiao Luo Insulin-like peptide 3 (INSL3), which is primarily expressed in the Leydig cells of the testes, is a member of the insulin superfamily of peptide hormones. One of its primary functions is to initiate and mediate descent of the testes of the male fetus via interaction with its G protein-coupled receptor, RXFP2. Study of the peptide has relied upon chemical synthesis of the separate A- and B-chains and subsequent chain recombination. To establish an alternative approach to the preparation of human INSL3, we designed and recombinantly expressed a single-chain INSL3 precursor in Escherichia coli cells. The precursor was solubilized from the inclusion body, purified almost to homogeneity by immobilized metal-ion affinity chromatography and refolded efficiently in vitro. The refolded precursor was subsequently converted to mature human INSL3 by sequential endoproteinase Lys-C and carboxypeptidase B treatment. CD spectroscopic analysis and peptide mapping showed that the refolded INSL3 possessed an insulin-like fold with the expected disulfide linkages. Recombinant human INSL3 demonstrated full activity in stimulating cAMP activity in RXFP2-expressing cells. Interestingly, the activity of the single-chain precursor was comparable with that of the mature two-chain INSL3, suggesting that the receptor-binding region within the mid- to C-terminal of B-chain is maintained in an active conformation in the precursor. This study not only provides an efficient approach for mature INSL3 preparation, but also resulted in the acquisition of a useful single-chain template for additional structural and functional studies of the peptide. [source] Analysis of the sugar-binding specificity of mannose-binding-type Jacalin-related lectins by frontal affinity chromatography , an approach to functional classificationFEBS JOURNAL, Issue 6 2008Sachiko Nakamura-Tsuruta The Jacalin-related lectin (JRL) family comprises galactose-binding-type (gJRLs) and mannose-binding-type (mJRLs) lectins. Although the documented occurrence of gJRLs is confined to the family Moraceae, mJRLs are widespread in the plant kingdom. A detailed comparison of sugar-binding specificity was made by frontal affinity chromatography to corroborate the structure,function relationships of the extended mJRL subfamily. Eight mJRLs covering a broad taxonomic range were used: Artocarpin from Artocarpus integrifolia (jackfruit, Moraceae), BanLec from Musa acuminata (banana, Musaceae), Calsepa from Calystegia sepium (hedge bindweed, Convolvulaceae), CCA from Castanea crenata (Japanese chestnut, Fagaceae), Conarva from Convolvulus arvensis (bindweed, Convolvulaceae), CRLL from Cycas revoluta (King Sago palm tree, Cycadaceae), Heltuba from Helianthus tuberosus (Jerusalem artichoke, Asteraceae) and MornigaM from Morus nigra (black mulberry, Moraceae). The result using 103 pyridylaminated glycans clearly divided the mJRLs into two major groups, each of which was further divided into two subgroups based on the preference for high-mannose-type N-glycans. This criterion also applied to the binding preference for complex-type N-glycans. Notably, the result of cluster analysis of the amino acid sequences clearly corresponded to the above specificity classification. Thus, marked correlation between the sugar-binding specificity of mJRLs and their phylogeny should shed light on the functional significance of JRLs. [source] Putative reaction mechanism of heterologously expressed octopine dehydrogenase from the great scallop, Pecten maximus (L)FEBS JOURNAL, Issue 24 2007Andre Müller cDNA for octopine dehydrogenase (ODH) from the adductor muscle of the great scallop, Pecten maximus, was cloned using 5,- and 3,-RACE. The cDNA comprises an ORF of 1197 nucleotides and the deduced amino acid sequence encodes a protein of 399 amino acids. ODH was heterologously expressed in Escherichia coli with a C-terminal penta His-tag. ODH,5His was purified to homogeneity using metal,chelate affinity chromatography and Sephadex G-100 gel filtration. Recombinant ODH had kinetic properties similar to those of wild-type ODH isolated from the scallop's adductor muscle. Site-directed mutagenesis was used to elucidate the involvement of several amino acid residues for the reaction catalyzed by ODH. Cys148, which is conserved in all opine dehydrogenases known to date, was converted to serine or alanine, showing that this residue is not intrinsically important for catalysis. His212, Arg324 and Asp329, which are also conserved in all known opine dehydrogenase sequences, were subjected to site-directed mutagenesis. Modification of these residues revealed their importance for the catalytic activity of the enzyme. Conversion of each of these residues to alanine resulted in strong increases in Km and decreases in kcat values for pyruvate and l -arginine, but had little effect on the Km and kcat values for NADH. Assuming a similar structure for ODH compared with the only available structure of a bacterial opine dehydrogenase, these three amino acids may function as a catalytic triad in ODH similar to that found in lactate dehydrogenase or malate dehydrogenase. The carboxyl group of pyruvate is then stabilized by Arg324. In addition to orienting the substrate, His212 will act as an acid,base catalyst by donating a proton to the carbonyl group of pyruvate. The acidity of this histidine is further increased by the proximity of Asp329. [source] Cell surface nucleolin on developing muscle is a potential ligand for the axonal receptor protein tyrosine phosphatase-,FEBS JOURNAL, Issue 20 2006Daniel E. Alete Reversible tyrosine phosphorylation, catalyzed by receptor tyrosine kinases and receptor tyrosine phosphatases, plays an essential part in cell signaling during axonal development. Receptor protein tyrosine phosphatase-, has been implicated in the growth, guidance and repair of retinal axons. This phosphatase has also been implicated in motor axon growth and innervation. Insect orthologs of receptor protein tyrosine phosphatase-, are also implicated in the recognition of muscle target cells. A potential extracellular ligand for vertebrate receptor protein tyrosine phosphatase-, has been previously localized in developing skeletal muscle. The identity of this muscle ligand is currently unknown, but it appears to be unrelated to the heparan sulfate ligands of receptor protein tyrosine phosphatase-,. In this study, we have used affinity chromatography and tandem MS to identify nucleolin as a binding partner for receptor protein tyrosine phosphatase-, in skeletal muscle tissue. Nucleolin, both from tissue lysates and in purified form, binds to receptor protein tyrosine phosphatase-, ectodomains. Its expression pattern also overlaps with that of the receptor protein tyrosine phosphatase-,-binding partner previously localized in muscle, and nucleolin can also be found in retinal basement membranes. We demonstrate that a significant amount of muscle-associated nucleolin is present on the cell surface of developing myotubes, and that two nucleolin-binding components, lactoferrin and the HB-19 peptide, can block the interaction of receptor protein tyrosine phosphatase-, ectodomains with muscle and retinal basement membranes in tissue sections. These data suggest that muscle cell surface-associated nucleolin represents at least part of the muscle binding site for axonal receptor protein tyrosine phosphatase-, and that nucleolin may also be a necessary component of basement membrane binding sites of receptor protein tyrosine phosphatase-,. [source] Isoprenoid biosynthesis in plants , 2C -methyl- d -erythritol-4-phosphate synthase (IspC protein) of Arabidopsis thalianaFEBS JOURNAL, Issue 19 2006Felix Rohdich The ispC gene of Arabidopsis thaliana was expressed in pseudomature form without the putative plastid-targeting sequence in a recombinant Escherichia coli strain. The recombinant protein was purified by affinity chromatography and was shown to catalyze the formation of 2C -methyl- d -erythritol 4-phosphate from 1-deoxy- d -xylulose 5-phosphate at a rate of 5.6 µmol·min,1·mg,1 (kcat 4.4 s,1). The Michaelis constants for 1-deoxy- d -xylulose 5-phosphate and the cosubstrate NADPH are 132 and 30 µm, respectively. The enzyme has an absolute requirement for divalent metal ions, preferably Mn2+ and Mg2+, and is inhibited by fosmidomycin with a Ki of 85 nm. The pH optimum is 8.0. NADH can substitute for NADPH, albeit at a low rate (14% as compared to NADPH). The enzyme catalyzes the reverse reaction at a rate of 2.1 µmol·min -1·mg -1. [source] Secretion of proteases in serglycin transfected Madin,Darby canine kidney cellsFEBS JOURNAL, Issue 3 2006Lillian Zernichow Madin,Darby canine kidney (MDCK) cells, which do not normally express the proteoglycan (PG) serglycin, were stably transfected with cDNA for human serglycin fused to a polyhistidine tag (His-tag). Clones with different levels of serglycin mRNA expression were generated. One clone with lower and one with higher serglycin mRNA expression were selected for this study. 35S-labelled serglycin in cell fractions and conditioned media was isolated using HisTrap affinity chromatography. Serglycin could also be detected in conditioned media using western blotting. To investigate the possible importance of serglycin linked to protease secretion, enzyme activities using chromogenic substrates and zymography were measured in cell fractions and serum-free conditioned media of the different clones. Cells were cultured in both the absence and presence of phorbol 12-myristate 13-acetate (PMA). In general, enzyme secretion was strongly enhanced by treatment with PMA. Our analyses revealed that the clone with the highest serglycin mRNA expression, level of HisTrap isolated 35S-labelled serglycin, and amount of serglycin core protein as detected by western blotting, also showed the highest secretion of proteases. Transfection of serglycin into MDCK cells clearly leads to changes in secretion levels of secreted endogenous proteases, and could provide further insight into the biosynthesis and secretion of serglycin and potential partner molecules. [source] The Y42H mutation in medium-chain acyl-CoA dehydrogenase, which is prevalent in babies identified by MS/MS-based newborn screening, is temperature sensitiveFEBS JOURNAL, Issue 20 2004Linda O'Reilly Medium-chain acyl-CoA dehydrogenase (MCAD) is a homotetrameric flavoprotein which catalyses the initial step of the ,-oxidation of medium-chain fatty acids. Mutations in MCAD may cause disease in humans. A Y42H mutation is frequently found in babies identified by newborn screening with MS/MS, yet there are no reports of patients presenting clinically with this mutation. As a basis for judging its potential consequences we have examined the protein phenotype of the Y42H mutation and the common disease-associated K304E mutation. Our studies of the intracellular biogenesis of the variant proteins at different temperatures in isolated mitochondria after in vitro translation, together with studies of cultured patient cells, indicated that steady-state levels of the Y42H variant in comparison to wild-type were decreased at higher temperature though to a lesser extent than for the K304E variant. To distinguish between effects of temperature on folding/assembly and the stability of the native enzyme, the thermal stability of the variant proteins was studied after expression and purification by dye affinity chromatography. This showed that, compared with the wild-type enzyme, the thermostability of the Y42H variant was decreased, but not to the same degree as that of the K304E variant. Substrate binding, interaction with the natural electron acceptor, and the binding of the prosthetic group, FAD, were only slightly affected by the Y42H mutation. Our study suggests that Y42H is a temperature sensitive mutation, which is mild at low temperatures, but may have deleterious effects at increased temperatures. [source] Fusion of farnesyldiphosphate synthase and epi -aristolochene synthase, a sesquiterpene cyclase involved in capsidiol biosynthesis in Nicotiana tabacumFEBS JOURNAL, Issue 14 2002Maria Brodelius A clone encoding farnesyl diphosphate synthase (FPPS) was obtained by PCR from a cDNA library made from young leaves of Artemisia annua. A cDNA clone encoding the tobacco epi -aristolochene synthase (eAS) was kindly supplied by J. Chappell (University of Kentucky, Lexington, KY, USA). Two fusions were constructed, i.e. FPPS/eAS and eAS/FPPS. The stop codon of the N-terminal enzyme was removed and replaced by a short peptide (Gly-Ser-Gly) to introduce a linker between the two ORFs. These two fusions and the two single cDNA clones were separately introduced into a bacterial expression vector (pET32). Escherichia coli was transformed with the expression vectors and enzymatically active soluble proteins were obtained after induction with isopropyl thio-,- d -thiogalactoside. The recombinant enzymes were purified using immobilized metal affinity chromatography on Co2+ columns. The fusion enzymes produced epi- aristolochene from isopentenyl diphosphate through a coupled reaction. The Km values of FPPS and eAS for isopentenyl diphosphate and farnesyl diphosphate, respectively, were essentially the same for the single and fused enzymes. The bifunctional enzymes showed a more efficient conversion of isopentenyl diphosphate to epi -aristolochene than the corresponding amount of single enzymes. [source] Reconstitution of Fo of the sodium ion translocating ATP synthase of Propionigenium modestum from its heterologously expressed and purified subunitsFEBS JOURNAL, Issue 10 2002Franziska Wehrle The atpB and atpF genes of Propionigenium modestum were cloned as His-tag fusion constructs and expressed in Escherichia coli. Both recombinant subunits a and b were purified via Ni2+ chelate affinity chromatography. A functionally active Fo complex was reassembled in vitro from subunits a, b and c, and incorporated into liposomes. The Fo liposomes catalysed 22Na+ uptake in response to an inside negative potassium diffusion potential, and the uptake was prevented by modification of the c subunits with N,N, - dicyclohexylcarbodiimide (DCCD). In the absence of a membrane potential the Fo complexes catalysed 22Na+out/Na+in -exchange. After F1 addition the F1Fo complex was formed and the holoenzyme catalysed ATP synthesis, ATP dependent Na+ pumping, and ATP hydrolysis, which was inhibited by DCCD. Functional Fo hybrids were reconstituted with recombinant subunits a and b from P. modestum and c11 from Ilyobacter tartaricus. These Fo hybrids had Na+ translocation activities that were not distinguishable from that of P. modestum Fo. [source] Characterization of the Cph1 holo-phytochrome from Synechocystis sp.FEBS JOURNAL, Issue 7 2001PCC 680 The cph1 gene from the unicellular cyanobacterium Synechoycstis sp. PCC 6803 encodes a protein with the characteristics of plant phytochromes and histidine kinases of two-component phospho-relay systems. Spectral and biochemical properties of Cph1 have been intensely studied in vitro using protein from recombinant systems, but virtually nothing is known about the situation in the natural host. In the present study, His6 -tagged Cph1 was isolated from Synechocystis cells. The cph1,his gene was expressed either under the control of the natural cph1 promoter or over-expressed using the strong promoter of the psbA2 gene. Upon purification with nickel affinity chromatography, the presence of Cph1 in extracts was confirmed by immunoblotting and Zn2+ -induced fluorescence. The Cph1 extracts exhibited a red/far-red photoactivity characteristic of phytochromes. Difference spectra were identical with those of the phycocyanobilin adduct of recombinant Cph1, implying that phycocyanobilin is the chromophore of Cph1 in Synechocystis. [source] Purification, characterization and amino-acid sequence analysis of a thermostable, low molecular mass endo-,-1,4-glucanase from blue mussel, Mytilus edulisFEBS JOURNAL, Issue 16 2000Bingze Xu A cellulase (endo-,-1,4- d -glucanase, EC 3.2.1.4) from blue mussel (Mytilus edulis) was purified to homogeneity using a combination of acid precipitation, heat precipitation, immobilized metal ion affinity chromatography, size-exclusion chromatography and ion-exchange chromatography. Purity was analyzed by SDS/PAGE, IEF and RP-HPLC. The cellulase (endoglucanase) was characterized with regard to enzymatic properties, isoelectric point, molecular mass and amino-acid sequence. It is a single polypeptide chain of 181 amino acids cross-linked with six disulfide bridges. Its molecular mass, as measured by MALDI-MS, is 19 702 Da; a value of 19 710.57 Da was calculated from amino-acid composition. The isoelectric point of the enzyme was estimated by isoelectric focusing in a polyacrylamide gel to a value of 7.6. According to amino-acid composition, the theoretical pI is 7.011. The effect of temperature on the endoglucanase activity, with carboxymethyl cellulose and amorphous cellulose as substrates, respectively, was studied at pH 5.5 and displayed an unusually broad optimum activity temperature range between 30 and 50 °C. Another unusual feature is that the enzyme retains 55,60% of its maximum activity at 0 °C. The enzyme readily degrades amorphous cellulose and carboxymethyl cellulose but displays no hydrolytic activity towards crystalline cellulose (Avicel) and shows no cross-specificity for xylan; there is no binding to Avicel. The enzyme can withstand 10 min at 100 °C without irreversible loss of enzymatic activity. Amino-acid sequence-based classification has revealed that the enzyme belongs to the glycoside hydrolase family 45, subfamily 2 (B. Henrissat, Centre de Recherches sur les Macromolecules Végétales, CNRS, Joseph Fourier Université, Grenoble, France, personal communication). [source] |