Home About us Contact | |||
Affected Brain Regions (affected + brain_regions)
Selected AbstractsPro-apoptotic protein glyceraldehyde-3-phosphate dehydrogenase promotes the formation of Lewy body-like inclusionsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2005Katsumi Tsuchiya Abstract Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been recognized as a classical glycolytic protein; however, previous studies by our group and others have demonstrated that GAPDH is a general mediator initiating one or more apoptotic cascades. Our most recent findings have elucidated that an expression of a pro-apoptotic protein GAPDH is critically regulated at the promoter region of the gene. Apoptotic signals for its subsequent aggregate formation and nuclear translocation are controlled by the respective functional domains harboured within its cDNA component. In this study, coexpression of GAPDH with either wild-type or mutant (A53T) ,-synuclein and less likely with ,-synuclein in transfected COS-7 cells was found to induce Lewy body-like cytoplasmic inclusions. Unlike its full-length construct, the deleted mutant GAPDH construct (C66) abolished these apoptotic signals, disfavouring the formation of inclusions. The generated inclusions were ubiquitin- and thioflavin S-positive appearing fibrils. Furthermore, GAPDH coimmunoprecipitated with wild-type ,-synuclein in this paradigm. Importantly, immunohistochemical examinations of post mortem materials from patients with sporadic Parkinson's disease revealed the colocalized profiles immunoreactive against these two proteins in the peripheral zone of Lewy bodies from the affected brain regions (i.e. locus coeruleus). Moreover, a quantitative assessment showed that about 20% of Lewy bodies displayed both antigenicities. These results suggest that pro-apoptotic protein GAPDH may be involved in the Lewy body formation in vivo, probably associated with the apoptotic death pathway. [source] Increased glucose metabolism and ATP level in brain tissue of Huntington's disease transgenic miceFEBS JOURNAL, Issue 19 2008Judit Oláh Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by multifarious dysfunctional alterations including mitochondrial impairment. In the present study, the formation of inclusions caused by the mutation of huntingtin protein and its relationship with changes in energy metabolism and with pathological alterations were investigated both in transgenic and 3-nitropropionic acid-treated mouse models for HD. The HD and normal mice were characterized clinically; the affected brain regions were identified by immunohistochemistry and used for biochemical analysis of the ATP-producing systems in the cytosolic and the mitochondrial compartments. In both HD models, the activities of some glycolytic enzymes were somewhat higher. By contrast, the activity of glyceraldehyde-3-phosphate dehydrogenase was much lower in the affected region of the brain compared to that of the control. Paradoxically, at the system level, glucose conversion into lactate was enhanced in cytosolic extracts from the HD brain tissue, and the level of ATP was higher in the tissue itself. The paradox could be resolved by taking all the observed changes in glycolytic enzymes into account, ensuing an experiment-based detailed mathematical model of the glycolytic pathway. The mathematical modelling using the experimentally determined kinetic parameters of the individual enzymes and the well-established rate equations predicted the measured flux and concentrations in the case of the control. The same mathematical model with the experimentally determined altered Vmax values of the enzymes did account for an increase of glycolytic flux in the HD sample, although the extent of the increase was not predicted quantitatively. This suggested a somewhat altered regulation of this major metabolic pathway in HD tissue. We then used the mathematical model to develop a hypothesis for a new regulatory interaction that might account for the observed changes; in HD, glyceraldehyde-3-phosphate dehydrogenase may be in closer proximity (perhaps because of the binding of glyceraldehyde-3-phosphate dehydrogenase to huntingtin) with aldolase and engage in channelling for glyceraldehyde-3-phosphate. By contrast to most of the speculation in the literature, our results suggest that the neuronal damage in HD tissue may be associated with increased energy metabolism at the tissue level leading to modified levels of various intermediary metabolites with pathological consequences. [source] Ischemia-induced modifications in hippocampal CA1 stratum radiatum excitatory synapsesHIPPOCAMPUS, Issue 10 2006Tatiana Kovalenko Abstract Relatively mild ischemic episode can initiate a chain of events resulting in delayed cell death and significant lesions in the affected brain regions. We studied early synaptic modifications after brief ischemia modeled in rats by transient vessels' occlusion in vivo or oxygen,glucose deprivation in vitro and resulting in delayed death of hippocampal CA1 pyramidal cells. Electron microscopic analysis of excitatory spine synapses in CA1 stratum radiatum revealed a rapid increase of the postsynaptic density (PSD) thickness and length, as well as formation of concave synapses with perforated PSD during the first 24 h after ischemic episode, followed at the long term by degeneration of 80% of synaptic contacts. In presynaptic terminals, ischemia induced a depletion of synaptic vesicles and changes in their spatial arrangement: they became more distant from active zones and had larger intervesicle spacing compared to controls. These rapid structural synaptic changes could be implicated in the mechanisms of cell death or adaptive plasticity. Comparison of the in vivo and in vitro model systems used in the study demonstrated a general similarity of these early morphological changes, confirming the validity of the in vitro model for studying synaptic structural plasticity. © 2006 Wiley-Liss, Inc. [source] Redox active iron accumulation in aceruloplasminemiaNEUROPATHOLOGY, Issue 5 2008Luis F. Gonzalez-Cuyar Aceruloplasminemia is an autosomal recessive disorder characterized by a ceruloplasmin gene mutation and defective or absent ceruloplasmin function. Because ceruloplasmin functions in iron transport and storage, aceruloplasminemia leads to excessive iron accumulation systemically and within the CNS. The type and form of iron deposited is unclear and while oxidative stress was hypothesized as a potential mechanism of cytotoxicity in this disorder, direct evidence linking oxidative stress to the underlying genetic defect has not been provided. To address these issues, we studied autopsy brain tissue from two subjects with genetically confirmed aceruloplasminemia using an assay developed in our laboratory for redox-active iron assessment. We found iron deposited in perivascular areas, localizing to terminal astrocytic processes and further showed that this iron was redox active. These data are consistent with the concept that oxidative stress, driven by heavy metal accumulation, represents the primary cellular cytotoxic process, accounting for neuronal damage in affected brain regions. As such, aceruloplasminemia is an excellent model of transition metal-driven oxidative stress and neurodegeneration. [source] LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson's diseaseNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2008J. Alegre-Abarrategui Classical Parkinson's disease (PD) is characterized by the appearance of Lewy bodies (LBs) in affected brain regions, showing mostly compact alpha-synuclein deposition, in contrast with punctate or granular deposition, hypothesized to represent early stages of aggregation. Leucine-rich repeat kinase 2 (LRRK2) is the commonest mutated gene in inherited and idiopathic PD. LRRK2 mutation carriers display a diverse neuropathology, including alpha-synuclein and tau inclusions, suggesting an upstream role for LRRK2 in protein aggregation. We studied LRRK2 expression throughout the normal human brain with three different antibodies. We also examined the pattern of LRRK2 expression in relation to alpha-synuclein aggregation and LB formation in the brainstem of sporadic LB disease. Physiological LRRK2 expression was not restricted to regions preferentially affected in PD and LRRK2 often localized to the nuclear envelope in addition to the known cytoplasmic expression. In PD, we were able to consistently detect LRRK2 in the halo of a minority (approximately 10%) of nigral LBs using three different antibodies. Only one antibody detected LRRK2 in the core of approximately 80% of classic LBs. In the lower brainstem, most notably in the dorsal motor nucleus of the vagus, we found previously unrecognized LRRK2 labelling of complex globular lesions, filled with LB-like matter showing a punctate or granular staining for alpha-synuclein. This was often accompanied by strong LRRK2 expression within dystrophic neurites. Our findings confirm widespread physiological LRRK2 expression in the human brain and suggest an association of LRRK2 with possible early-stage alpha-synuclein pathology in the brainstem of PD. [source] Molecular neuropathology of MELAS: level of heteroplasmy in individual neurones and evidence of extensive vascular involvementNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2006J. Betts Mitochondrial DNA (mtDNA) disease is an important genetic cause of neurological disability. A variety of different clinical features are observed and one of the most common phenotypes is MELAS (Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes). The majority of patients with MELAS have the 3243A>G mtDNA mutation. The neuropathology is dominated by multifocal infarct-like lesions in the posterior cortex, thought to underlie the stroke-like episodes seen in patients. To investigate the relationship between mtDNA mutation load, mitochondrial dysfunction and neuropathological features in MELAS, we studied individual neurones from several brain regions of two individuals with the 3243A>G mutation using dual cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) histochemistry, and Polymerase Chain Reaction Restriction Fragment Lenght Polymorphism (PCR-RFLP) analysis. We found a low number of COX-deficient neurones in all brain regions. There appeared to be no correlation between the threshold level for the 3243A>G mutation to cause COX deficiency within single neurones and the degree of pathology in affected brain regions. The most severe COX deficiency associated with the highest proportion of mutated mtDNA was present in the walls of the leptomeningeal and cortical blood vessels in all brain regions. We conclude that vascular mitochondrial dysfunction is important in the pathogenesis of the stroke-like episodes in MELAS patients. As migraine is a commonly encountered feature in MELAS, we propose that coupling of the vascular mitochondrial dysfunction with cortical spreading depression (CSD) might underlie the selective distribution of ischaemic lesions in the posterior cortex in these patients. [source] |