Encoding

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Encoding

  • adenovirus encoding
  • bp encoding
  • cDNA encoding
  • cdna clone encoding
  • cdna encoding
  • clone encoding
  • dna encoding
  • dna vaccine encoding
  • exon encoding
  • fourier velocity encoding
  • frame encoding
  • gene encoding
  • mrna encoding
  • open reading frame encoding
  • phase encoding
  • plasmid encoding
  • reading frame encoding
  • region encoding
  • sensitivity encoding
  • sequence encoding
  • transcript encoding
  • transgene encoding
  • vaccine encoding
  • vector encoding
  • velocity encoding

  • Terms modified by Encoding

  • encoding enzyme
  • encoding gene
  • encoding green fluorescent protein
  • encoding interleukin
  • encoding protein
  • encoding sequence

  • Selected Abstracts


    CLONING AND SEQUENCING OF THE ,-AMYLASE GENE FROM BACILLUS SUBTILIS US116 STRAIN ENCODING AN ENZYME CLOSELY IDENTICAL TO THAT FROM BACILLUS AMYLOLIQUEFACIENS BUT DISTINCT IN THERMAL STABILITY

    JOURNAL OF FOOD BIOCHEMISTRY, Issue 2 2010
    EZZEDINE BEN MESSAOUD
    ABSTRACT The gene encoding for the ,-amylase AMYUS116 was cloned and sequenced. The amino acid sequence of AMYUS116 exhibited an almost perfect homology with the ,-amylase BACAAM, excluding the residues N205 and N217 of AMYUS116 that were changed to H205 and I217 into BACAAM. Three mutant derivatives from AMYUS116 (N205H, N217I and N205H/N217I) were created by site-directed mutagenesis and their physicochemical and kinetic properties were compared with those of the wild-type enzymes. Therefore, the undertaken amylases mainly generated maltohexaose from starch and had radically the same kinetic parameters and optimum pH and temperature. They, however, were significantly distinct in thermal stability; AMYUS116 was more thermosensible as its half-life time at 80C was 13 min, while those of BACAAM and the double mutant were likewise 38 min. The single-mutant amylases exhibited an identically intermediate thermal stability as their half-life times at 80C were roughly 22 min. PRACTICAL APPLICATIONS Of particular interest to the current search is that the different thermal stability between AMYUS116 and BACAAM can lead to novel findings pertaining to protein stability, which can bring about new strategies for protein engineering. Basically, the comparative study of closely related amylases and the protein engineering of already existing ones are certainly important because they offer opportunities to understand the structure,function relationships of these biocatalysts. [source]


    Grammar-based Encoding of Facades

    COMPUTER GRAPHICS FORUM, Issue 4 2010
    Simon Haegler
    Abstract In this paper we propose a real-time rendering approach for procedural cities. Our first contribution is a new lightweight grammar representation that compactly encodes facade structures and allows fast per-pixel access. We call this grammar F -shade. Our second contribution is a prototype rendering system that renders an urban model from the compact representation directly on the GPU. Our suggested approach explores an interesting connection from procedural modeling to real-time rendering. Evaluating procedural descriptions at render time uses less memory than the generation of intermediate geometry. This enables us to render large urban models directly from GPU memory. [source]


    Cloning and Characterization of the cDNA Encoding the Masquerade-like Serine Proteinase Homologue Gene of the Silkworm, Bombyx mori

    ENTOMOLOGICAL RESEARCH, Issue 3 2002
    Doo-Sang PARK
    ABSTRACT From Bombyx mori larvae, RT-PCR and cDNA library screening isolated masquerade-like serine proteinase homologue cDNA gene, proposed to be related to insect immunity and its characteristics were examined. The isolated gene is composed of 1.3 kb of nucleotide and 420 amino acid residues were encoded. According to the results of database search, the isolated gene showed high sequence homology with Holotrichia and Tenebrio's 45 kDa protein, Drosophila CG5390 gene. Moreover, it is composed of regulatory domain and catalytic domain, which is characteristic of serine proteinase that can be found in the insect immune reaction and embryonic development processes. Enzyme activation site by proteolytic cleavage and the sequence of three amino acids participate in the catalytic triad of enzyme and 14 cystein residues used in disulfide bridges are well conserved with the compared genes. The mRNA expression was increased following E. coli injection and constitutive expression was also observed before injection by Northern blot analysis. [source]


    Encoding of Facial Expressions of Emotion and Knowledge of American Sign Language

    JOURNAL OF APPLIED SOCIAL PSYCHOLOGY, Issue 1 2000
    NAOMI E. GOLDSTEIN
    The relationship between knowledge of American Sign Language (ASL) and the ability to encode facial expressions of emotion was explored. Participants were 55 college students, half of whom were intermediate-level students of ASL and half of whom had no experience with a signed language. In front of a video camera, participants posed the affective facial expressions of happiness, sadness, fear, surprise, anger, and disgust. These facial expressions were randomized onto stimulus tapes that were then shown to 60 untrained judges who tried to identify the expressed emotions. Results indicated that hearing subjects knowledgeable in ASL were generally more adept than were hearing nonsigners at conveying emotions through facial expression. Results have implications for better understanding the nature of nonverbal communication in hearing and deaf individuals. [source]


    Accelerating non-contrast-enhanced MR angiography with inflow inversion recovery imaging by skipped phase encoding and edge deghosting (SPEED)

    JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2010
    Zheng Chang PhD
    Abstract Purpose: To accelerate non-contrast-enhanced MR angiography (MRA) with inflow inversion recovery (IFIR) with a fast imaging method, Skipped Phase Encoding and Edge Deghosting (SPEED). Materials and Methods: IFIR imaging uses a preparatory inversion pulse to reduce signals from static tissue, while leaving inflow arterial blood unaffected, resulting in sparse arterial vasculature on modest tissue background. By taking advantage of vascular sparsity, SPEED can be simplified with a single-layer model to achieve higher efficiency in both scan time reduction and image reconstruction. SPEED can also make use of information available in multiple coils for further acceleration. The techniques are demonstrated with a three-dimensional renal non-contrast-enhanced IFIR MRA study. Results: Images are reconstructed by SPEED based on a single-layer model to achieve an undersampling factor of up to 2.5 using one skipped phase encoding direction. By making use of information available in multiple coils, SPEED can achieve an undersampling factor of up to 8.3 with four receiver coils. The reconstructed images generally have comparable quality as that of the reference images reconstructed from full k -space data. Conclusion: As demonstrated with a three-dimensional renal IFIR scan, SPEED based on a single-layer model is able to reduce scan time further and achieve higher computational efficiency than the original SPEED. J. Magn. Reson. Imaging 2010;31:757,765. © 2010 Wiley-Liss, Inc. [source]


    Encoding of electrophysiology and other signals in MR images

    JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 5 2007
    Lars G. Hanson PhD
    Abstract Purpose To develop a gradient insensitive, generic technique for recording of non-MR signals by use of surplus scanner bandwidth. Materials and Methods Relatively simple battery driven hardware is used to transform one or more signals into radio waves detectable by the MR scanner. Similar to the "magstripe" technique used for encoding of soundtracks in motion pictures, the electrical signals are in this way encoded as artifacts appearing in the MR images or spectra outside the region of interest. The encoded signals are subsequently reconstructed from the signal recorded by the scanner. Results Electrophysiological (EP) eye and heart muscular recording (electrooculography [EOG] and electrocardiography [ECG]) during fast echo planar imaging (EPI) is demonstrated with an expandable, modular 8-channel prototype implementation. The gradient artifacts that would normally be dominating EOG are largely eliminated. Conclusion The method provides relatively inexpensive sampling with inherent microsecond synchronization and it reduces gradient artifacts in physiological recordings significantly. When oversampling is employed, the method is compatible with all MR reconstruction and postprocessing techniques. J. Magn. Reson. Imaging 2007;25:1059,1066. © 2007 Wiley-Liss, Inc. [source]


    Expression of the Genes Encoding the Vasopressin-Activated Calcium-Mobilizing Receptor and the Dual Angiotensin II/Vasopressin Receptor in the Rat Central Nervous System

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2000
    Hurbin
    The distributions of two newly discovered receptors, the vasopressin-activated calcium-mobilizing receptor (VACM-1) and the dual angiotensin II/vasopressin receptor (AII/AVP), in the central nervous system (CNS) of the rat were determined using reverse transcriptase-polymerase chain reaction and in situ hybridization. The sequence of the rat VACM-1 cDNA was determined and found very homologous to the rabbit and human sequences. Both VACM-1 and AII/AVP receptor genes were widely expressed in the brain, but differed according to the cell type studied. Glial cells were very faintly labelled. The epithelial cells of the choroid plexuses, the ependymal cells and the pia mater were all labelled. Both genes were most active in neurones throughout the CNS. VACM-1 and AII/AVP receptors were detected in neurones previously shown to possess V1a and V1b vasopressin receptors, and/or the AT1 and AT2 angiotensin II receptors in many brain areas. This was the case for the magnocellular neurones of the supraoptic and paraventricular nuclei of the hypothalamus. We suggest that the VACM-1 and AII/AVP receptors may account for the V2 -like responses to vasopressin by these neurones which lack a genuine V2 vasopressin receptor. [source]


    Encoding and reconstruction in parallel MRI

    NMR IN BIOMEDICINE, Issue 3 2006
    Klaas P. Pruessmann
    Abstract The advent of parallel MRI over recent years has prompted a variety of concepts and techniques for performing parallel imaging. A main distinguishing feature among these is the specific way of posing and solving the problem of image reconstruction from undersampled multiple-coil data. The clearest distinction in this respect is that between k -space and image-domain methods. The present paper reviews the basic reconstruction approaches, aiming to emphasize common principles along with actual differences. To this end the treatment starts with an elaboration of the encoding mechanisms and sampling strategies that define the reconstruction task. Based on these considerations a formal framework is developed that permits the various methods to be viewed as different solutions of one common problem. Besides the distinction between k -space and image-domain approaches, special attention is given to the implications of general vs lattice sampling patterns. The paper closes with remarks concerning noise propagation and control in parallel imaging and an outlook upon key issues to be addressed in the future. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Characterization of a Cryptosporidium parvum Gene Encoding a Protein with Homology to Long Chain Fatty Acid Synthetase

    THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2003
    Leonardo Camero
    ABSTRACT: We describe here the cloning, sequencing, and characterization of a novel Cryptosporidium parvum gene, encoding a protein with significant homology to the long-chain fatty acyl-CoA synthetase (LCFA, EC 6.2.13). The gene has an open reading frame of 2,301 bp, coding for a 766 amino acid polypeptide, and with an estimated MW of 86.1 kDa. By indirect immunofluorescence assay, monoclonal antibodies C3CE7 and ESD labeled the anterior pole of fixed C. parvum sporozoites and developmental stages in C. parvum-infected cultures at 24, 48, and 72 h post-infection. These monoclonal antibodies inhibited more than 3.5% of parasite growth in vitro. The effect of triacsin C, a potent selective inhibitor of LCFA synthetase, on parasite growth was assessed in cell culture; complete inhibition of parasite growth at 2.5 ug/inl was obtained with little evidence of drug-associated cytotoxicity. These results suggest that the fatty acyl-CoA synthetase may be a useful target in the development of selective inhibitors and immunologic interventions against C. parvum [source]


    Molecular Cloning and Characterization of a Gene Encoding a 13.1 kDa Antigenic Protein of Naegleria fowleri

    THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 6 2001
    HO-JOON SHIN
    ABSTRACT. An antigen-related gene was cloned from a cDNA expression library of Naegleria fowleri by immunoscreening with sera obtained from mice that were either immunized with an amoebic lysate or infected with trophozoites. The coding nucleotide sequence of the cloned gene consisted of 357 bases that were translated into 119 amino acids. This gene was designated as nfal. The predicted amino acid sequence of Nfal protein has two potential glycosylation and three potential phosphorylation sites, and its predicted secondary structure consists of four helices and three corners. The deduced amino acid sequence of Nfal protein shares 43% identity with the myohemerythrin (myoHr) protein from a marine annelid, Nereis diversicolor, including 100% identity in conserved regions and iron-binding residues. A phylogenetic tree constructed from amino acid sequences placed the N. fowleri Nfal protein outside of a cluster of myoHr proteins from eight invertebrates. A purified recombinant protein that migrated as a 13.1 kDa species in SDS-PAGE was produced. This recombinant protein exhibited a strong immunoreactivity with infected, immune, and anti-Nfal sera. In addition. an anti-Nfal serum reacted with an amoeba lysate in immunoblotting analysis. The present nfal gene encoding the myoHr-like protein is the first myoHr gene cloned from protozoa, and the Nfal antigen may be useful in diagnostic studies. [source]


    mRNA Encoding a Putative RNA Helicase of the DEAD-Box Gene Family is Up-Regulated in Trypomastigotes of Trypanosoma cruzi

    THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 6 2000
    ALBERTO M. DÍAZ AÑEL
    ABSTRACT. Differential display of mRNAs from Trypanosoma cruzi epimastigote and metacyclic trypomastigote stages showed several mRNA species differing in their expression level. The cDNA corresponding to one of these mRNAs was used as a probe in Northern blots and identified a RNA product of 2.6 kb with an expression level eight or more times higher in trypomastigotes than in epimastigotes. This probe was also used to screen a genomic library of T. cruzi CL Brener clone prepared in lambda FIX. A clone of about 15 kb was selected that, after partial sequencing, revealed an open reading frame of 688 amino acids encoding a deduced protein with similarity to RNA helicases of the DEAD-box gene family. The presence of the eight conserved motifs characteristic of the DEAD protein family was observed in the T. cruzi sequence, indicating that it corresponds to a putative RNA helicase gene, which we named HelTc. Southern blot analysis indicated that HelTc is a single-copy gene. Pulsed-field gel electrophoresis separation of chromosomes of several isolates of T. cruzi showed that this gene was localized in one or two chromosomal bands. [source]


    Encoding of whisker input by cerebellar Purkinje cells

    THE JOURNAL OF PHYSIOLOGY, Issue 19 2010
    Laurens W. J. Bosman
    The cerebellar cortex is crucial for sensorimotor integration. Sensorimotor inputs converge on cerebellar Purkinje cells via two afferent pathways: the climbing fibre pathway triggering complex spikes, and the mossy fibre,parallel fibre pathway, modulating the simple spike activities of Purkinje cells. We used, for the first time, the mouse whisker system as a model system to study the encoding of somatosensory input by Purkinje cells. We show that most Purkinje cells in ipsilateral crus 1 and crus 2 of awake mice respond to whisker stimulation with complex spike and/or simple spike responses. Single-whisker stimulation in anaesthetised mice revealed that the receptive fields of complex spike and simple spike responses were strikingly different. Complex spike responses, which proved to be sensitive to the amplitude, speed and direction of whisker movement, were evoked by only one or a few whiskers. Simple spike responses, which were not affected by the direction of movement, could be evoked by many individual whiskers. The receptive fields of Purkinje cells were largely intermingled, and we suggest that this facilitates the rapid integration of sensory inputs from different sources. Furthermore, we describe that individual Purkinje cells, at least under anaesthesia, may be bound in two functional ensembles based on the receptive fields and the synchrony of the complex spike and simple spike responses. The ,complex spike ensembles' were oriented in the sagittal plane, following the anatomical organization of the climbing fibres, while the ,simple spike ensembles' were oriented in the transversal plane, as are the beams of parallel fibres. [source]


    Expression of Messenger Ribonucleic Acid Encoding for Phosphodiesterase Isoenzymes in Human Female Genital Tissues

    THE JOURNAL OF SEXUAL MEDICINE, Issue 6 2007
    Stefan Uckert PhD
    ABSTRACT Objectives., The use of inhibitors of phosphodiesterase 5 (PDE5) has been suggested to treat symptoms of female sexual dysfunction (FSD). Nonetheless, there has been a relatively low success rate of PDE5 inhibitors in FSD in comparison with male erectile dysfunction. The elevated expression of PDE5 in the human penile erectile tissue is considered the reason for the high clinical efficacy of PDE5 inhibitors in the pharmacotherapy of male erectile dysfunction. Aim., To evaluate by means of molecular biology the expression of messenger ribonucleic acid expression (mRNA) encoding for cyclic AMP and cyclic GMP PDE isoenzymes in female genital tissues. Main Outcome Measures., The amount of mRNA transcripts specifically encoding for cyclic AMP- and/or cyclic GMP-degrading PDE isoenzymes was determined. Methods., Human clitoral, labial, and vaginal tissue was obtained from four female cadavers (age at death: 18,42 years). The expression of mRNA specifically encoding for PDE1A, 1B, 1C, 2A, 4A, 5A, 10A, and 11A was elucidated by means of real-time polymerase chain reaction (PCR) analysis (TaqMan). Human penile erectile tissue (corpus cavernosum [HCC]) was used as a reference tissue. Results., mRNA encoding for all PDE isoforms mentioned above is expressed in the female genital tissues. Different magnitudes of mRNA expression were observed: a predominant expression of mRNA encoding for PDE1A but only insignificant amounts of PDE1B, 1C, 4A, 10, and 11A mRNA were registered. With PDE1A being the only exception, the mRNA expression was always higher in the HCC than in the female genital tissues. Especially, the expression of mRNA encoding for PDE5 was several-fold higher in the HCC. Conclusion., On the mRNA level, various PDE isoforms are expressed in the clitoris, labia, and vagina. It remains to be established as to whether the low expression of PDE5 in female genital tissue might be a negative predictor for the success of PDE5 inhibitors in the treatment of FSD. Uckert S, Ellinghaus P, Albrecht K, Jonas U, and Oelke M. Expression of messenger ribonucleic acid encoding for phosphodiesterase isoenzymes in human female genital tissues. J Sex Med 2007;4:1604,1609. [source]


    Microparticle Matrix Encoding of Beads,

    ANGEWANDTE CHEMIE, Issue 20 2010
    Morten Meldal Prof.
    Die optische Kodierung von Harzen auf Polyethylenglycol(PEG)-Basis ermöglicht eine direkte Identifizierung von Verbindungen in kombinatorischen Bibliotheken und eine Korrelation zwischen Struktur und biologischer Aktivität. Diese Mikropartikelmatrix(MPM)-Kodierung (siehe Bild) vermeidet einige Probleme, die häufig bei der kombinatorischen Chemie an der Festphase auftreten, und lässt sich zudem leicht einbauen. [source]


    Nuclear Magnetic Resonance Using a Spatial Frequency Encoding: Application to J -Edited Spectroscopy along the Sample,

    ANGEWANDTE CHEMIE, Issue 20 2010
    Nicolas Giraud Dr.
    Fühle den Puls: Mit räumlich codierten NMR-Sequenzen lassen sich selektive Experimente an unterschiedlichen Teilen einer Probe gleichzeitig ausführen. Bei der Anwendung einer gradientencodierten Sequenz konnten alle Kopplungen für einen bestimmten Protonspin bequem aus einem Spektrum erhalten und zugeordnet werden. [source]


    Asymmetric Reduction of a Variety of Ketones with a Recombinant Carbonyl Reductase: Identification of the Gene Encoding a Versatile Biocatalyst.

    CHEMINFORM, Issue 31 2005
    Tadashi Ema
    No abstract is available for this article. [source]


    In vivo Remote Delivery of DNA Encoding for Hypoxia-inducible Factor 1 Alpha Reduces Myocardial Infarct Size

    CLINICAL AND TRANSLATIONAL SCIENCE, Issue 1 2009
    Gabor Czibik M.D.
    Abstract We tested if remote gene delivery of hypoxia-inducible factor 1 alpha (HIF-1,) protected hearts against induced ischemia, hypothesizing that gene delivery into skeletal muscle may lead to secretion of proteins with actions elsewhere. Murine quadriceps muscles were transfected with DNA encoding for human HIF-1,, which resulted in a local, but lasting expression (mRNA and protein, where the latter had nuclear localization). Subjection of isolated hearts to global ischemia and reperfusion 1, 4, and 8 weeks after gene delivery resulted in infarct size reduction (p < 0.05). Supporting that this was due to paracrine effects, HL-1 cells treated with conditioned media from cells transfected with HIF-1, or serum from HIF-1,-treated mice were protected against H2O2 -induced cell death (p < 0.05, respectively). The latter protection was reduced when a heme oxygenase activity blocker was used. Taqman low-density array of 47 HIF-1,-regulated genes at the treatment site showed nine specific upregulations (p < 0.05). Of the corresponding proteins, PDGF-B and adrenomedullin were upregulated in the heart. HIF-1, treatment induced an increased vascularization of the heart and skeletal muscle. In conclusion, remote delivery of DNAfor HIF-1, was cardioprotective, represented by consistent infarct size reduction, which may be due to release of paracrine factors from the transfected muscle. [source]


    Optimizing the point spread function in phase-encoded magnetic resonance microscopy

    CONCEPTS IN MAGNETIC RESONANCE, Issue 1 2004
    A.G. Webb
    Abstract Three-dimensional phase-encoded magnetic resonance microscopy is the most promising method for obtaining images with isotropic spatial resolutions on the order of a few micrometers. The attainable spatial resolution is limited by the available gradient strength (Gmax) and the molecular self-diffusion coefficient (D) of the sample. In this study, numerical simulations in the microscopic-size regime are presented in order to show that for given values of Gmax and D, there exists an optimum number of phase-encoding steps that maximize the spatial resolution in terms of minimizing the full-width at half-maximum (FWHM) of the image point spread function (PSF). Unlike the case of "macroscopic" imaging, in which diffusion plays an insignificant role in determining spatial resolution, acquiring data beyond this optimal value actually degrades the image PSF. An alternative version of phase encoding, using a variable phase-encoding time rather than a variable gradient strength, is analyzed in terms of improvements in the image PSF and/or reductions in the data acquisition time for a given spatial resolution. © 2004 Wiley Periodicals, Inc. Concepts Magn Reson 22A: 25,36, 2004. [source]


    MRMOGA: a new parallel multi-objective evolutionary algorithm based on the use of multiple resolutions

    CONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 4 2007
    Antonio López Jaimes
    Abstract In this paper, we introduce MRMOGA (Multiple Resolution Multi-Objective Genetic Algorithm), a new parallel multi-objective evolutionary algorithm which is based on an injection island approach. This approach is characterized by adopting an encoding of solutions which uses a different resolution for each island. This approach allows us to divide the decision variable space into well-defined overlapped regions to achieve an efficient use of multiple processors. Also, this approach guarantees that the processors only generate solutions within their assigned region. In order to assess the performance of our proposed approach, we compare it to a parallel version of an algorithm that is representative of the state-of-the-art in the area, using standard test functions and performance measures reported in the specialized literature. Our results indicate that our proposed approach is a viable alternative to solve multi-objective optimization problems in parallel, particularly when dealing with large search spaces. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Kinesin-5 is not essential for mitotic spindle elongation in Dictyostelium

    CYTOSKELETON, Issue 11 2008
    Irina Tikhonenko
    Abstract The proper assembly and operation of the mitotic spindle is essential to ensure the accurate segregation of chromosomes and to position the cytokinetic furrow during cell division in eukaryotes. Not only are dynamic microtubules required but also the concerted actions of multiple motor proteins are necessary to effect spindle pole separation, chromosome alignment, chromatid segregation, and spindle elongation. Although a number of motor proteins are known to play a role in mitosis, there remains a limited understanding of their full range of functions and the details by which they interact with other spindle components. The kinesin-5 (BimC/Eg5) family of motors is largely considered essential to drive spindle pole separation during the initial and latter stages of mitosis. We have deleted the gene encoding the kinesin-5 member in Dictyostelium, (kif13), and find that, in sharp contrast with results found in vertebrate, fly, and yeast organisms, kif13, cells continue to grow at rates indistinguishable from wild type. Phenotype analysis reveals a slight increase in spindle elongation rates in the absence of Kif13. More importantly, there is a dramatic, premature separation of spindle halves in kif13, cells, suggesting a novel role of this motor in maintaining spindle integrity at the terminal stages of division. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source]


    Plant profilin isovariants are distinctly regulated in vegetative and reproductive tissues

    CYTOSKELETON, Issue 1 2002
    Muthugapatti K. Kandasamy
    Abstract Profilin is a low-molecular weight, actin monomer-binding protein that regulates the organization of actin cytoskeleton in eukaryotes, including higher plants. Unlike the simple human or yeast systems, the model plant Arabidopsis has an ancient and highly divergent multi-gene family encoding five distinct profilin isovariants. Here we compare and characterize the regulation of these profilins in different organs and during microspore development using isovariant-specific monoclonal antibodies. We show that PRF1, PRF2, and PRF3 are constitutive, being strongly expressed in all vegetative tissues at various stages of development. These profilin isovariants are also predominant in ovules and microspores at the early stages of microsporogenesis. In contrast, PRF4 and PRF5 are late pollen-specific and are not detectable in other cell types of the plant body including microspores and root hairs. Immunocytochemical studies at the subcellular level reveal that both the constitutive and pollen-specific profilins are abundant in the cytoplasm. In vegetative cell types, such as root apical cells, profilins showed localization to nuclei in addition to the cytoplasmic staining. The functional diversity of profilin isovariants is discussed in light of their spatio-temporal regulation during vegetative development, pollen maturation, and pollen tube growth. Cell Motil. Cytoskeleton 52:22,32, 2002. © 2002 Wiley-Liss, Inc. [source]


    SunB, a novel Sad1 and UNC-84 domain-containing protein required for development of Dictyostelium discoideum

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2010
    Nao Shimada
    A gene, sunB, encoding a novel class of Sad1 and UNC-84 (SUN) domain, was isolated from a cDNA screen for suppressors of a mutation in Dd-STATa , a Dictyostelium homologue of metazoan STAT (signal transducers and activators of transcription). The SunB protein localized in the area around the nucleus in growing cells, but in the multicellular stages it was predominantly found in prespore vacuoles (PSVs). A disruptant of sunB was multinucleated in the vegetative phase; during development it formed mounds with multiple tips and failed to culminate. The mutation was cell autonomous, and showed reduced expression of the prespore marker gene pspA and elevated expression of marker genes for prestalk AB cells. Interestingly, the level of SunB was abnormally high in the prestalk cells of Dd-STATa mutants, which are defective in culmination. We conclude that SunB is essential for accurate prestalk/prespore differentiation during Dictyostelium development and that its cell-type dependent localization is regulated by a Dd-STATa-mediated signaling pathway. [source]


    Novel genes involved in canonical Wnt/, -catenin signaling pathway in early Ciona intestinalis embryos

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2008
    Shuichi Wada
    We report here characterization of five genes for novel components of the canonical Wnt/, -catenin signaling pathway. These genes were identified in the ascidian Ciona intestinalis through a loss-of-function screening for genes required for embryogenesis with morpholinos, and four of them have counterparts in vertebrates. The five genes we studied are as follows: Ci-PGAP1, a Ciona orthologue of human PGAP1, which encodes GPI (glycosylphosphatidylinositol) inositol-deacylase, Ci-ZF278, a gene encoding a C2H2 zinc-finger protein, Ci-C10orf11, a Ciona orthologue of human C10orf11 that encodes a protein with leucine-rich repeats, Ci-Spatial/C4orf17, a single counterpart for two human genes Spatial and C4orf17, and Ci-FLJ10634, a Ciona orthologue of human FLJ10634 that encodes a member of the J-protein family. Knockdown of each of the genes mimicked , -catenin knockdown and resulted in suppression of the expression of , -catenin downstream genes (Ci-FoxD, Ci-Lhx3, Ci-Otx and Ci-Fgf9/16/20) and subsequent endoderm formation. For every gene, defects in knockdown embryos were rescued by overexpression of a constitutively active form, but not wild-type, of Ci- , -catenin. Dosage-sensitive interactions were found between Ci-,-catenin and each of the genes. These results suggest that these five genes act upstream of or parallel to Ci- , -catenin in the Wnt/, -catenin signaling pathway in early Ciona embryos. [source]


    Expression of Gpr177, a Wnt trafficking regulator, in mouse embryogenesis

    DEVELOPMENTAL DYNAMICS, Issue 7 2010
    Hsiao-Man Ivy Yu
    Abstract Wls/Evi/Srt encoding a multipass transmembrane protein has been identified as a regulator for proper sorting and secretion of Wnt in flies. We have previously demonstrated that Gpr177 is the mouse ortholog required for axis determination. Gpr177 is a transcriptional target of Wnt that is activated to assist its subcellular distribution in a feedback regulatory loop. We, therefore, proposed that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here, we examine the expression pattern of Gpr177 in mouse development. Gpr177 is expressed in a variety of tissues and cell types during organogenesis. Furthermore, Gpr177 is a glycoprotein primarily accumulating in the Golgi apparatus in signal-producing cells. The glycosylation of Gpr177 is necessary for proper transportation in the secretory pathway. Our findings suggest that the Gpr177-mediated regulation of Wnt is crucial for organogenesis in health and disease. Developmental Dynamics 239:2102,2109, 2010. © 2010 Wiley-Liss, Inc. [source]


    Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85,, p55,, and p50,

    DEVELOPMENTAL DYNAMICS, Issue 10 2009
    Carla Mouta-Bellum
    Abstract The phosphoinositide 3-kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here, we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85,, p55,, and p50, impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage-dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell-origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up-regulation of the transforming growth factor-, co-receptor endoglin, and reduced levels of mature vascular endothelial growth factor-C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis. Developmental Dynamics 238:2670,2679, 2009. © 2009 Wiley-Liss, Inc. [source]


    Left-asymmetric expression of Galanin in the linear heart tube of the mouse embryo is independent of the nodal co-receptor gene cryptic

    DEVELOPMENTAL DYNAMICS, Issue 12 2008
    Axel Schweickert
    Abstract Only very few left/right asymmetrically expressed genes are known in the mammalian embryo. In a screen for novel factors we identified the gene encoding the neuropeptide Galanin in mouse. At embryonic day (E) 8.5 asymmetric mRNA transcription was found in the left half of the linear heart tube. During heart looping and morphogenesis expression became restricted to the atrio-ventricular (AV) canal, followed by specific staining of the AV-node and AV-rings in the four-chambered heart. Expression was inverted in inv/inv and randomized in homozygous iv mutant embryos. Left-sided heart-specific transcription of mouse Gal thus should be controlled by the left-right pathway. The asymmetric pattern was retained in cryptic mutant embryos, in which the Nodal signaling cascade is disrupted. Surprisingly, Pitx2c was found to be expressed in 50% of cryptic mutant hearts as well, suggesting that some aspects of asymmetric gene expression in the heart are independent of cryptic. Developmental Dynamics 237:3557,3564, 2008. © 2008 Wiley-Liss, Inc. [source]


    Drosophila melanogaster p24 genes have developmental, tissue-specific, and sex-specific expression patterns and functions

    DEVELOPMENTAL DYNAMICS, Issue 2 2007
    Kara A. Boltz
    Abstract Genes encoding members of the p24 family of intracellular trafficking proteins are present throughout animal and plant lineages. However, very little is known about p24 developmental, spatial, or sex-specific expression patterns or how localized expression affects function. We investigated these problems in Drosophila melanogaster, which contains nine genes encoding p24 proteins. One of these genes, logjam (loj), is expressed in the adult female nervous system and ovaries and is essential for oviposition. Nervous system-specific expression of loj, but not ovary-specific expression, rescues the behavioral defect of mutants. The Loj protein localizes to punctate structures in the cellular cytoplasm. These structures colocalize with a marker specific to the intermediate compartment and cis -Golgi, consistent with experimental evidence from other systems suggesting that p24 proteins function in intracellular transport between the endoplasmic reticulum and Golgi. Our findings reveal that Drosophila p24 transcripts are developmentally and tissue-specifically expressed. CG31787 is male-specifically expressed gene that is present during the larval, pupal, and adult stages. Female CG9053 mRNA is limited to the head, whereas males express this gene widely. Together, our studies provide experimental evidence indicating that some p24 genes have sex-specific expression patterns and tissue- and sex-limited functions. Developmental Dynamics 236:544,555, 2007. © 2006 Wiley-Liss, Inc. [source]


    Zac1 promotes a Müller glial cell fate and interferes with retinal ganglion cell differentiation in Xenopus retina

    DEVELOPMENTAL DYNAMICS, Issue 1 2007
    Lin Ma
    Abstract The timing of cell cycle exit is tightly linked to cell fate specification in the developing retina. Accordingly, several tumor suppressor genes, which are key regulators of cell cycle exit in cancer cells, play critical roles in retinogenesis. Here we investigated the role of Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, in retinal development. Strikingly, in gain-of-function assays in Xenopus, mouse Zac1 promotes proliferation and apoptosis at an intermediate stage of retinogenesis. Zac1 also influences cell fate decisions, preferentially promoting the differentiation of tumor-like clusters of abnormal neuronal cells in the ganglion cell layer, as well as inducing the formation of supernumerary Müller glial cells at the expense of other cell types. Thus Zac1 has the capacity to influence cell cycle exit, and cell fate specification and differentiation decisions by retinal progenitors, suggesting that further functional studies will uncover new insights into how retinogenesis is regulated. Developmental Dynamics 236:192,202, 2007. © 2006 Wiley-Liss, Inc. [source]


    Definition and spatial annotation of the dynamic secretome during early kidney development

    DEVELOPMENTAL DYNAMICS, Issue 6 2006
    Gemma Martinez
    Abstract The term "secretome" has been defined as a set of secreted proteins (Grimmond et al. [2003] Genome Res 13:1350,1359). The term "secreted protein" encompasses all proteins exported from the cell including growth factors, extracellular proteinases, morphogens, and extracellular matrix molecules. Defining the genes encoding secreted proteins that change in expression during organogenesis, the dynamic secretome, is likely to point to key drivers of morphogenesis. Such secreted proteins are involved in the reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (MM) that occur during organogenesis of the metanephros. Some key metanephric secreted proteins have been identified, but many remain to be determined. In this study, microarray expression profiling of E10.5, E11.5, and E13.5 kidney and consensus bioinformatic analysis were used to define a dynamic secretome of early metanephric development. In situ hybridisation was used to confirm microarray results and clarify spatial expression patterns for these genes. Forty-one secreted factors were dynamically expressed between the E10.5 and E13.5 timeframe profiled, and 25 of these factors had not previously been implicated in kidney development. A text-based anatomical ontology was used to spatially annotate the expression pattern of these genes in cultured metanephric explants. Developmental Dynamics 235:1709,1719, 2006. © 2006 Wiley-Liss, Inc. [source]


    Electroporation as a tool to study in vivo spinal cord regeneration

    DEVELOPMENTAL DYNAMICS, Issue 2 2003
    K. Echeverri
    Abstract Tailed amphibians such as axolotls and newts have the unique ability to fully regenerate a functional spinal cord throughout life. Where the cells come from and how they form the new structure is still poorly understood. Here, we describe the development of a technique that allows the visualization of cells in the living animal during spinal cord regeneration. A microelectrode needle is inserted into the lumen of the spinal cord and short rapid pulses are applied to transfer the plasmids encoding the green or red fluorescent proteins into ependymal cells close to the plane of amputation. The use of small, transparent axolotls permits imaging with epifluorescence and differential interference contrast microscopy to track the transfected cells as they contribute to the spinal cord. This technique promises to be useful in understanding how neural progenitors are recruited to the regenerating spinal cord and opens up the possibility of testing gene function during this process. Developmental Dynamics 226:418,425, 2003. © 2003 Wiley-Liss, Inc. [source]