Home About us Contact | |||
Enzyme Target (enzyme + target)
Selected AbstractsThe mechanisms of resistance to antimalarial drugs in Plasmodium falciparumFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 2 2003Jacques Le Bras Abstract Drug-resistant malaria is primarily caused by Plasmodium falciparum, a species highly prevalent in tropical Africa, the Amazon region and South-east Asia. It causes severe fever or anaemia that leads to more than a million deaths each year. The emergence of chloroquine resistance has been associated with a dramatic increase in malaria mortality among inhabitants of some endemic regions. The rationale for chemoprophylaxis is weakening as multiple-drug resistance develops against well-tolerated drugs. Plasmodium falciparum drug-resistant malaria originates from chromosome mutations. Analysis by molecular, genetic and biochemical approaches has shown that (i) impaired chloroquine uptake by the parasite vacuole is a common characteristic of resistant strains, and this phenotype is correlated with mutations of the Pfmdr1, Pfcg2 and Pfcrt genes; (ii) one to four point mutations of dihydrofolate reductase (DHFR), the enzyme target of antifolates (pyrimethamine and proguanil) produce a moderate to high level of resistance to these drugs; (iii) the mechanism of resistance to sulfonamides and sulfones involves mutations of dihydropteroate synthase (DHPS), their enzyme target; (iv) treatment with sulphadoxine,pyrimethamine selects for DHFR variants Ile(51), Arg(59), and Asn(108) and for DHPS variants Ser(436), Gly(437), and Glu(540); (v) clones that were resistant to some traditional antimalarial agents acquire resistance to new ones at a high frequency (accelerated resistance to multiple drugs, ARMD). The mechanisms of resistance for amino-alcohols (quinine, mefloquine and halofantrine) are still unclear. Epidemiological studies have established that the frequency of chloroquine resistant mutants varies among isolated parasite populations, while resistance to antifolates is highly prevalent in most malarial endemic countries. Established and strong drug pressure combined with low antiparasitic immunity probably explains the multidrug-resistance encountered in the forests of South-east Asia and South America. In Africa, frequent genetic recombinations in Plasmodium originate from a high level of malaria transmission, and falciparum chloroquine-resistant prevalence seems to stabilize at the same level as chloroquine-sensitive malaria. Nevertheless, resistance levels may differ according to place and time. In vivo and in vitro tests do not provide an adequate accurate map of resistance. Biochemical tools at a low cost are urgently needed for prospective monitoring of resistance. [source] Neuroserpin regulates neurite outgrowth in nerve growth factor-treated PC12 cellsJOURNAL OF NEUROCHEMISTRY, Issue 6 2002Parmjeet K. Parmar Abstract Neuroserpin is a serine protease inhibitor widely expressed in the developing and adult nervous systems and implicated in the regulation of proteases involved in processes such as synaptic plasticity, neuronal migration and axogenesis. We have analysed the effect of neuroserpin on growth factor-induced neurite outgrowth in PC12 cells. We show that small changes in neuroserpin expression result in changes to the number of cells extending neurites and total neurite length following NGF treatment. Increased expression of neuroserpin resulted in a decrease in the number of cells extending neurites and a reduction in total free neurite length whereas reduced levels of neuroserpin led to a small increase in the number of neurite extending cells and a significant increase in total free neurite length compared to the parent cell line. Neuroserpin also altered the response of PC12 cells to bFGF and EGF treatment. Neuroserpin was localised to dense cored secretory vesicles in PC12 cells but was unable to complex with its likely enzyme target, tissue plasminogen activator at the acidic pH found in these vesicles. These data suggest that modulation of neuroserpin levels at the extending neurite growth cone may play an important role in regulating axonal growth. [source] Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activityPHYTOTHERAPY RESEARCH, Issue 8 2009Rosalie Awad Abstract A novel pharmacological mechanism of action for the anxiolytic botanical Melissa officinalis L. (lemon balm) is reported. The methanol extract was identified as a potent in vitro inhibitor of rat brain GABA transaminase (GABA-T), an enzyme target in the therapy of anxiety, epilepsy and related neurological disorders. Bioassay-guided fractionation led to the identification and isolation of rosmarinic acid (RA) and the triterpenoids, ursolic acid (UA) and oleanolic acid (OA) as active principles. Phytochemical characterization of the crude extract determined RA as the major compound responsible for activity (40% inhibition at 100 µg/mL) since it represented approximately 1.5% of the dry mass of the leaves. Synergistic effects may also play a role. Copyright © 2009 John Wiley & Sons, Ltd. [source] The identification of enzyme targets for the optimization of a valine producing Corynebacterium glutamicum strain using a kinetic modelBIOTECHNOLOGY PROGRESS, Issue 3 2009Jørgen Barsett Magnus Abstract The enzyme targets for the rational optimization of a Corynebacterium glutamicum strain constructed for valine production are identified by analyzing the control of flux in the valine/leucine pathway. The control analysis is based on measurements of the intracellular metabolite concentrations and on a kinetic model of the reactions in the investigated pathway. Data-driven and model-based methods are used and evaluated against each other. The approach taken gives a quantitative evaluation of the flux control and it is demonstrated how the understanding of flux control is used to reach specific recommendations for strain optimization. The flux control coefficients (FCCs) with respect to the valine excretion rate were calculated, and it was found that the control is distributed mainly between the acetohydroxyacid synthase enzyme (FCC = 0.32), the branched chain amino acid transaminase (FCC = 0.27), and the exporting translocase (FCC = 0.43). The availability of the precursor pyruvate has substantial influence on the valine flux, whereas the cometabolites are less important as demonstrated by the calculation of the respective response coefficients. The model is further used to make in-silico predictions of the change in valine flux following a change in enzyme level. A doubling of the enzyme level of valine translocase will result in an increase in valine flux of 31%. By optimizing the enzyme levels with respect to valine flux it was found that the valine flux can be increased by a factor 2.5 when the optimal enzyme levels are implemented. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] A Mass Spectrometry Plate Reader: Monitoring Enzyme Activity and Inhibition with a Desorption/Ionization on Silicon (DIOS) PlatformCHEMBIOCHEM, Issue 7 2004Zhouxin Shen Dr. Abstract A surface-based laser desorption/ionization mass spectrometry assay that makes use of Desorption/Ionization on Silicon Mass Spectrometry (DIOS-MS) has been developed to monitor enzyme activity and enzyme inhibition. DIOS-MS has been used to characterize inhibitors from a library and then to monitor their activity against selected enzyme targets, including proteases, glycotransferase, and acetylcholinesterase. An automated DIOS-MS system was also used as a high-throughput screen for the activity of novel enzymes and enzyme inhibitors. On two different commercially available instruments, a sampling rate of up to 38 inhibitors per minute was accomplished, with thousands of inhibitors being monitored. The ease of applying mass spectrometry toward developing enzyme assays and the speed of surface-based assays such as DIOS for monitoring inhibitor effectiveness and enzyme activity makes it attractive for a broad range of screening applications. [source] The Use of Biochemical and Biophysical Tools for Triage of High-Throughput Screening Hits , A Case Study with Escherichia coli Phosphopantetheine AdenylyltransferaseCHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2010J. Richard Miller High-throughput screening is utilized by pharmaceutical researchers and, increasingly, academic investigators to identify agents that act upon enzymes, receptors, and cellular processes. Screening hits include molecules that specifically bind the target and a greater number of non-specific compounds. It is necessary to ,triage' these hits to identify the subset worthy of further exploration. As part of our antibacterial drug discovery effort, we applied a suite of biochemical and biophysical tools to accelerate the triage process. We describe application of these tools to a series of 9-oxo-4,9-dihydropyrazolo[5,1-b]quinazoline-2-carboxylic acids (PQ) hits from a screen of Escherichia coli phosphopantetheine adenylyltransferase (PPAT). Initial confirmation of specific binding to phosphopantetheine adenylyltransferase was obtained using biochemical and biophysical tools, including a novel orthogonal assay, isothermal titration calorimetry, and saturation transfer difference NMR. To identify the phosphopantetheine adenylyltransferase sub-site bound by these inhibitors, two techniques were utilized: steady-state enzyme kinetics and a novel 19F NMR method in which fluorine-containing fragments that bind the ATP and/or phosphopantetheine sites serve as competitive reporter probes. These data are consistent with PQs binding the ATP sub-site. In addition to identification of a series of PPAT inhibitors, the described hit triage process is broadly applicable to other enzyme targets in which milligram quantities of purified target protein are available. [source] |