Enzyme Source (enzyme + source)

Distribution by Scientific Domains


Selected Abstracts


Monoamine oxidase inhibition and neuroprotection by N1 -propargylphenelzine

DRUG DEVELOPMENT RESEARCH, Issue 1 2001
B. Duff Sloley
Abstract The ability of N1 -propargylphenelzine and related N1 -propargylhydrazines to inhibit monoamine oxidase-A (MAO-A) and -B (MAO-B) and to prevent N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4)-induced noradrenergic neurotoxicity was examined. N1 -Propargylphenelzine strongly inhibited MAO-A and MAO-B in in vitro assays using rat brain or liver as the enzyme source. In ex vivo studies in rats, both intraperitoneal and oral administration of N1 -propargylphenelzine strongly inhibited brain and liver MAO-A and MAO-B. The extent of ex vivo MAO inhibition and increased levels of noradrenaline and 5-hydroxytryptamine by N1 -propargylphenelzine was comparable to that of phenelzine. Unlike phenelzine, however, N1 -propargylphenelzine did not elevate ,-aminobutryic acid (GABA) concentrations in rat brain. A single intraperitoneal administration of N1 -propargylphenelzine to mice, 1 week prior to sacrifice, reduced DSP-4-induced depletion of noradrenaline in the hippocampus. The brains of N1 -propargylphenelzine-treated mice from the DSP-4 neurotoxicity experiments had normal MAO-B activity, but MAO-A was significantly inhibited; this was in contrast to animals that had received (,)-deprenyl, who showed normal MAO-A activity but a decrease of MAO-B. The present results indicate that N1 -propargylphenelzine may be a useful neuroprotective compound with a long-term in vivo propensity to inhibit MAO-A. Drug Dev. Res. 53:15,21, 2001. © 2001 Wiley-Liss, Inc. [source]


Metabolism of chlorpyrifos and chlorpyrifos oxon by human hepatocytes,

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 6 2006
Kyoungju Choi
Abstract The metabolism of chlorpyrifos (CPS) and chlorpyrifos oxon (CPO) by human hepatocytes and human liver S9 fractions was investigated using LC-MS/MS. Cytochrome P450 (CYP)-dependent and phase II-related products were determined following incubation with CPS and CPO. CYP-related products, 3,5,6-trichloro-2-pyridinol (TCP), diethyl thiophosphate, and dealkylated CPS, were found following CPS treatment and dealkylated CPO following CPO treatment. Diethyl phosphate was not identified because of its high polarity and lack of retention with the chromatographic conditions employed. Phase II-related conjugates, including O- and S-glucuronides as well as 11 GSH-derived metabolites, were identified in CPS-treated human hepatocytes, although the O -sulfate of TCP conjugate was found only when human liver S9 fractions were used as the enzyme source. O -Glucuronide of TCP was also identified in CPO-treated hepatocytes. CPS and CPO were identified using HPLC,UV after CPS metabolism by the human liver S9 fraction. However, CPO was not found following treatment of human hepatocytes with either CPS or CPO. These results suggest that human liver plays an important role in detoxification, rather than activation, of CPS. © 2006 Wiley Periodicals, Inc. J Biochem Mol Toxicol 20:279,291, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20145 [source]


Binding modules alter the activity of chimeric cellulases: Effects of biomass pretreatment and enzyme source,

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2010
Tae-Wan Kim
Abstract Improving the catalytic activity of cellulases requires screening variants against solid substrates. Expressing cellulases in microbial hosts is time-consuming, can be cellulase specific, and often leads to inactive forms and/or low yields. These limitations have been obstacles for improving cellulases in a high-throughput manner. We have developed a cell-free expression system and used it to express 54 chimeric bacterial and archaeal endoglucanases (EGs), with and without cellulose binding modules (CBMs) at either the N- or C-terminus, in active enzyme yields of 100,350,µg/mL. The platform was employed to systematically study the role of CBMs in cellulose hydrolysis toward a variety of natural and pretreated solid substrates, including ionic-liquid pretreated Miscanthus and AFEX-pretreated corn stover. Adding a CBM generally increased activity against crystalline Avicel, whereas for pretreated substrates the effect of CBM addition depended on the source of cellulase. The cell-free expression platform can thus provide insights into cellulase structure-function relationships for any substrate, and constitutes a powerful discovery tool for evaluating or engineering cellulolytic enzymes for biofuels production. Biotechnol. Bioeng. 2010;107:601,611. © 2010 Wiley Periodicals, Inc. [source]


Interaction of bisphenol a with human UDP-glucuronosyltransferase 1A6 enzyme

ENVIRONMENTAL TOXICOLOGY, Issue 3 2008
Nobumitsu Hanioka
Abstract The effects of bisphenol A (BPA) on UDP-glucuronosyltransferase 1A6 (UGT1A6) activities in microsomes from human livers and yeast cells expressing human UGT1A6 (humUGT1A6) were investigated. Serotonin (5-HT) and 4-methylumbelliferone (4-MU) were used as the substrates for UGT1A6. BPA dose-dependently inhibited 5-HT and 4-MU glucuronidation activities in both enzyme sources. The IC50 values of BPA for 5-HT and 4-MU glucuronidation activities were 156 and 163 ,M for liver microsomes, and 84.6 and 80.3 ,M for yeast cell microsomes expressing humUGT1A6, respectively. The inhibitory pattern of BPA for 5-HT and 4-MU glucuronidation activities in human liver microsomes exhibited a mixture of competitive and noncompetitive components, with Ki values of 84.9 and 72.3 ,M, respectively. In yeast cell microsomes expressing humUGT1A6, 5-HT glucuronidation activities were noncompetitively inhibited by BPA (Ki value, 65.5 ,M), whereas the inhibition of 4-MU glucuronidation activities by BPA exhibited the mixed type (Ki value, 42.5 ,M). These results suggest that BPA interacts with human UGT1A6 enzyme, and that the interaction may contribute to the toxicity, such as hormone disruption and reproductive effects, of BPA. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2008. [source]


AN ESTEROLYTIC ACTIVITY FROM A WILD EDIBLE MUSHROOM, LYCOPERDON PERLATUM

JOURNAL OF FOOD BIOCHEMISTRY, Issue 4 2009
AHMET COLAK
ABSTRACT Lycoperdon perlatum Pers. (Lycoperdaceae, Agaricales, Agaricomycetidae, Agaricomycetes, Basidiomycota, Fungi) was evaluated for its esterolytic potential. Native electrophoresis of the crude extracts showed four bands having Rf values of 0.34, 0.39, 0.52 and 0.59. The esterase showed the highest activity toward a short-chain substrate, p -nitrophenyl acetate. Optimum reaction conditions for L. perlatum crude extract were attained at pH 8.0 and 40C. Esterolytic activity of enzyme extract was stimulated in the presence of Mn2+, Fe2+, Ca2+ and Zn2+ in the reaction mixture. The enzyme activity was stimulated by incubation at pH 6.0 but retained 77% of its original activity at its optimum pH after 24 h. Thermal inactivation was displayed after incubation for 20 min at various temperatures above 30C. At 1 mM final concentration, 2-mercaptoethanol, dithiothreitol, ethylenediamine tetraacetic acid and p -methylphenyl sulfonylfluoride inhibited the esterolytic reaction. These results support that the crude L. perlatum extract possesses an esterolytic activity having properties similar to other esterases. PRACTICAL APPLICATIONS Esterases catalyzing the cleavage and formation of ester bonds are known ,/,-hydrolases (EC 3.1.1.X). Esterases are used for the synthesis of flavor esters for the food industry, modification of triglycerides for fat and oil industry and resolution of racemic mixtures used for the synthesis of fine chemicals for the pharmaceutical industry. Therefore, the search for new enzyme sources is important for the development of new enzymes and applications. [source]


Allosteric kinetics of human carboxylesterase 1: Species differences and interindividual variability,

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2008
Shiori Takahashi
Abstract Esterified drugs such as imidapril, derapril, and oxybutynin hydrolyzed by carboxylesterase 1 (CES1) are extensively used in clinical practice. The kinetics using the CES1 substrates have not fully clarified, especially concerning species and tissue differences. In the present study, we performed the kinetic analyses in humans and rats in order to clarify these differences. The imidaprilat formation from imidapril exhibited sigmoidal kinetics in human liver microsomes (HLM) and cytosol (HLC) but Michaelis-Menten kinetics in rat liver microsomes and cytosol. The 2-cyclohexyl-2-phenylglycolic acid (CPGA) formation from oxybutynin were not detected in enzyme sources from rats, although HLM showed high activity. The kinetics were clarified to be different among species, tissues, and preparations. In individual HLM and HLC, there was large interindividual variability in imidaprilat (31- and 24-fold) and CPGA formations (15- and 9-fold). Imidaprilat formations exhibited Michaelis-Menten kinetics in HLM and HLC with high activity but sigmoidal kinetics in those with low activity. CPGA formations showed sigmoidal kinetics in high activity HLM but Michaelis-Menten kinetics in HLM with low activity. We revealed that the kinetics were different between individuals. These results could be useful for understanding interindividual variability and for the development of oral prodrugs. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:5434,5445, 2008 [source]