Enzymatic Digestibility (enzymatic + digestibility)

Distribution by Scientific Domains


Selected Abstracts


Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra)

BIOTECHNOLOGY PROGRESS, Issue 2 2009
Venkatesh Balan
Abstract There is a growing need to find alternatives to crude oil as the primary feed stock for the chemicals and fuel industry and ethanol has been demonstrated to be a viable alternative. Among the various feed stocks for producing ethanol, poplar (Populus nigra Populus maximowiczii) is considered to have great potential as a biorefinery feedstock in the United States, due to their widespread availability and good productivity in several parts of the country. We have optimized AFEX pretreatment conditions (180C, 2:1 ammonia to biomass loading, 233% moisture, 30 minutes residence time) and by using various combinations of enzymes (commercical celluloses and xylanases) to achieve high glucan and xylan conversion (93 and 65%, respectively). We have also identified and quantified several important degradation products formed during AFEX using liquid chromatography followed by mass spectrometry (LC-MS/MS). As a part of degradation product analysis, we have also quantified oligosaccharides in the AFEX water wash extracts by acid hydrolysis. It is interesting to note that corn stover (C4 grass) can be pretreated effectively using mild AFEX pretreatment conditions, while on the other hand hardwood poplar requires much harsher AFEX conditions to obtain equivalent sugar yields upon enzymatic hydrolysis. Comparing corn stover and poplar, we conclude that pretreatment severity and enzymatic hydrolysis efficiency are dictated to a large extent by lignin carbohydrate complexes and arabinoxylan cross-linkages for AFEX. 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2010
Chandraraj Krishnan
Abstract Sugarcane is one of the major agricultural crops cultivated in tropical climate regions of the world. Each tonne of raw cane production is associated with the generation of 130,kg dry weight of bagasse after juice extraction and 250,kg dry weight of cane leaf residue postharvest. The annual world production of sugarcane is ,1.6 billion tones, generating 279 MMT tones of biomass residues (bagasse and cane leaf matter) that would be available for cellulosic ethanol production. Here, we investigated the production of cellulosic ethanol from sugar cane bagasse and sugar cane leaf residue using an alkaline pretreatment: ammonia fiber expansion (AFEX). The AFEX pretreatment improved the accessibility of cellulose and hemicelluloses to enzymes during hydrolysis by breaking down the ester linkages and other lignin carbohydrate complex (LCC) bonds and the sugar produced by this process is found to be highly fermentable. The maximum glucan conversion of AFEX pretreated bagasse and cane leaf residue by cellulases was ,85%. Supplementation with hemicellulases during enzymatic hydrolysis improved the xylan conversion up to 95,98%. Xylanase supplementation also contributed to a marginal improvement in the glucan conversion. AFEX-treated cane leaf residue was found to have a greater enzymatic digestibility compared to AFEX-treated bagasse. Co-fermentation of glucose and xylose, produced from high solid loading (6% glucan) hydrolysis of AFEX-treated bagasse and cane leaf residue, using the recombinant Saccharomyces cerevisiae (424A LNH-ST) produced 34,36,g/L of ethanol with 92% theoretical yield. These results demonstrate that AFEX pretreatment is a viable process for conversion of bagasse and cane leaf residue into cellulosic ethanol. Biotechnol. Bioeng. 2010;107: 441,450. 2010 Wiley Periodicals, Inc. [source]


Methodological analysis for determination of enzymatic digestibility of cellulosic materials

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2007
Y.-H. Percival Zhang
Abstract Accurate measurement of enzymatic cellulose digestibility (X) is important in evaluating the efficiency of lignocellulose pretreatment technologies, assessing the performance of reconstituted cellulase mixtures, and conducting economic analysis for biorefinery processes. We analyzed the effect of sugars contained in enzymes solutions, usually added as a preservative, and random measurement errors on the accuracy of X calculated by various methods. The analysis suggests that exogenous sugars at levels measured in several commercial enzyme preparations significantly bias the results and that this error should be minimized by accounting for these sugars in the calculation of X. Additionally, a method of calculating X equating the ratio of the soluble glucose equivalent in the liquid phase after hydrolysis to the sum of the soluble glucose equivalent in the liquid phase and the insoluble glucose equivalent in the residual solid after hydrolysis was found to be the most accurate, particularly at high conversion levels (>ca. 50%). Biotechnol. Bioeng. 2007;96: 188,194. 2006 Wiley Periodicals, Inc. [source]


Enzymatic digestion of liquid hot water pretreated hybrid poplar

BIOTECHNOLOGY PROGRESS, Issue 2 2009
Youngmi Kim
Abstract Liquid hot (LHW) water pretreatment (LHW) of lignocellulosic material enhances enzymatic conversion of cellulose to glucose by solubilizing hemicellulose fraction of the biomass, while leaving the cellulose more reactive and accessible to cellulase enzymes. Within the range of pretreatment conditions tested in this study, the optimized LHW pretreatment conditions for a 15% (wt/vol) slurry of hybrid poplar were found to be 200oC, 10 min, which resulted in the highest fermentable sugar yield with minimal formation of sugar decomposition products during the pretreatment. The LHW pretreatment solubilized 62% of hemicellulose as soluble oligomers. Hot-washing of the pretreated poplar slurry increased the efficiency of hydrolysis by doubling the yield of glucose for a given enzyme dose. The 15% (wt/vol) slurry of hybrid poplar, pretreated at the optimal conditions and hot-washed, resulted in 54% glucose yield by 15 FPU cellulase per gram glucan after 120 h. The hydrolysate contained 56 g/L glucose and 12 g/L xylose. The effect of cellulase loading on the enzymatic digestibility of the pretreated poplar is also reported. Total monomeric sugar yield (glucose and xylose) reached 67% after 72 h of hydrolysis when 40 FPU cellulase per gram glucan were used. An overall mass balance of the poplar-to-ethanol process was established based on the experimentally determined composition and hydrolysis efficiencies of the liquid hot water pretreated poplar. 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]