Distribution by Scientific Domains

Terms modified by ENSO

  • enso event
  • enso signal

  • Selected Abstracts

    Interspecific Effects of Artifically Propagated Fish: an Additional Conservation Risk for Salmon

    Phillip S. Levin
    We tested the hypothesis that hatchery-reared steelhead salmon ( Oncorhynchus mykiss) released into the Snake River Basin negatively affect the survival of wild Snake River steelhead and chinook ( O. tshawytscha) salmon. Because climatic conditions can influence salmon survival, we included an index of the El Niño,Southern Oscillation ( ENSO) as a covariate in our analyses. Based on time series of hatchery releases and rates of smolt-to-adult survival, we demonstrate that the survival of wild chinook salmon is negatively associated with hatchery releases of steelhead. The state of the ( ENSO) did not affect the strength of this relationship. We observed no relationship between survival of wild steelhead and steelhead hatchery releases. Our results suggest that industrial-scale production of hatchery fish may hinder the recovery of some threatened salmonids and that the potential interspecific impact of hatcheries must be considered as agencies begin the process of hatchery reform. Resumen: Por más de 120 años, las granjas han liberado números enormes de salmones del Pacífico para compensar las numerosas agresiones humanos a sus poblaciones, sin embargo, los impactos ecológicos de este esfuerzo masivo son poco entendidos. Evaluamos la hipótesis de que la trucha cabeza de acero ( Oncorhynchus mykiss) criada en granjas y liberada en la cuenca del Río Snake afecta negativamente la supervivencia de truchas cabeza de acero y salmones chinook ( O. tshawytscha) silvestres. Puesto que las condiciones climáticas pueden influir sobre la supervivencia del salmón, incluimos un índice de la Oscilación del Niño del Sur como covariable del análisis. En base a series de tiempo de las liberaciones de las granjas y las tasas de supervivencia hasta adulto de peces migrantes al mar, demostramos que la supervivencia del salmón chinook silvestre está negativamente correlacionada con las liberaciones de truchas cabeza de acero de las granjas. El estado de la Oscilación del Niño del Sur no afectó el grado de correlación. No observamos relación alguna entre la supervivencia de las truchas silvestres y las liberaciones de las granjas. Nuestros resultados sugieren que la producción a escala industrial de peces de granja puede obstaculizar la recuperación de algunos salmónidos amenazados y que el impacto interespecífico potencial de las granjas debería ser considerado en cuanto las agencias inicien el proceso de reforma de las granjas. [source]

    Oceanic influence on the precipitation of the south-east of Venezuela

    ENVIRONMETRICS, Issue 3 2002
    Lelys Guenni
    Abstract The Caroní catchment located in the south-east of Venezuela accounts for 70 per cent of the total hydropower energy of the country. On a year to year basis, it has been shown that low frequency large scale ocean-atmosphere phenomena are highly coupled to the hydroclimatology of the region, El Niño-Southern Oscillation (ENSO) being a major forcing mechanism of climatic and hydrological anomalies. Regional differences in amplitude and timing are due to complex orographic interactions, land surface-atmosphere feedback mechanisms and the evolution of dominant synoptic meteorological conditions. A detailed analysis of the relationship between rainfall and several large scale ocean-atmospheric variables was carried out to determine the potential use of large scale climatic information as predictors of the rainfall anomalies over the region. The problem was tackled in two ways: (a) first a seasonal dynamic rainfall model was fitted to monthly rainfall for different locations. In this case rainfall is assumed as a normal variate w which has been transformed to account for its departure from normality and truncated to account for the positive probability mass of zero values, which corresponds to negative values of the normal variable. The time series of the model parameters and the macroclimatic variables are inspected for their potential relationship with local rainfall via the stochastic model. (b) Second, dynamic linear regression models between the macroclimatic variables as predictors and the rainfall anomalies as predictant were fitted to evaluate and quantify the significance of these dependencies. Consistent patterns are observed with the Tropical Atlantic and Pacific ocean temperature anomalies, in which a significant negative relationship has been present since 1976, indicating an overall decrease (increase) in rainfall when the Pacific and the Tropical Atlantic are warmer (colder) than normal. In all cases the results suggest that the relationships between rainfall anomalies and the macroclimatic variables are not constant with time. Copyright © 2002 John Wiley & Sons, Ltd. [source]

    El Niño, climate change, and Southern African climate

    ENVIRONMETRICS, Issue 4 2001
    Simon J. Mason
    Abstract The El Niño phenomenon involves a large-scale warming of the equatorial eastern and central Pacific Ocean. Recent developments in the El Niño,Southern Oscillation (ENSO) phenomenon have raised concerns about climate change. In this review paper, these recent developments are critically assessed and forecasts of possible future changes are reviewed. Since the late-1970s, El Niño episodes have been unusually recurrent, while the frequency of strong La Niña events has been low. Prolonged/recurrent warm event conditions of the first half of the 1990s were the result of the persistence of an anomalously warm pool near the date line, which, in turn, may be part of an abrupt warming trend in tropical sea-surface temperatures that occurred in the late-1970s. The abrupt warming of tropical sea-surface temperatures has been attributed to the enhanced-greenhouse effect, but may be indicative of inter-decadal variability: earlier changes in the frequency of ENSO events and earlier persistent El Niño and La Niña sequences have occurred. Most forecasts of ENSO variability in a doubled-CO2 climate suggest that the recent changes in the tropical Pacific are anomalous. Of potential concern, however, is a possible reduction in the predictability of ENSO events given a warmer background climate. El Niño events usually are associated with below-normal rainfall over much of southern Africa. Mechanisms for this influence on southern African climate are discussed, and the implications of possible changes in ENSO variability on the climate of the region are assessed. Recent observed changes in southern African climate and their possible relationships with trends in ENSO variability are investigated. The El Niño influence on rainfall over southern Africa occurs largely because of a weakening of tropical convection over the subcontinent. A warming of the Indian Ocean during El Niño events appears to be important in providing a teleconnection from the equatorial Pacific Ocean. The abrupt warming of the tropical Pacific and Indian oceans in the late-1970s is probably partly responsible for increasing air temperatures over southern Africa, and may have contributed to a prolongation of predominantly dry conditions. A return to a wet phase appears to have occurred, despite the persistence of anomalously high sea-surface temperatures associated with the late-1970s warming, and a record-breaking El Niño in 1997/98. Copyright © 2001 John Wiley & Sons, Ltd. [source]

    Time series analyses reveal transient relationships between abundance of larval anchovy and environmental variables in the coastal waters southwest of Taiwan

    Abstract We investigated environmental effects on larval anchovy fluctuations (based on CPUE from 1980 to 2000) in the waters off southwestern Taiwan using advanced time series analyses, including the state-space approach to remove seasonality, wavelet analysis to investigate transient relationships, and stationary bootstrap to test correlation between time series. For large-scale environmental effects, we used the Southern Oscillation Index (SOI) to represent the El Niño Southern Oscillation (ENSO); for local hydrographic conditions, we used sea surface temperature (SST), river runoff, and mixing conditions. Whereas the anchovy catch consisted of a northern species (Engraulis japonicus) and two southern species (Encrasicholina heteroloba and Encrasicholina punctifer), the magnitude of the anchovy catch appeared to be mainly determined by the strength of Eng. japonicus (Japanese anchovy). The main factor that caused the interannual variation of anchovy CPUE might change through time. The CPUE showed a negative correlation with combination of water temperature and river runoff before 1987 and a positive correlation with river runoff after 1988. Whereas a significant negative correlation between CPUE and ENSOs existed, this correlation was driven completely by the low-frequency ENSO events and explained only 10% of the variance. Several previous studies on this population emphasized that the fluctuations of larval anchovy abundance were determined by local SST. Our analyses indicated that such a correlation was transient and simply reflected ENSO signals. Recent advances in physical oceanography around Taiwan showed that the ENSOs reduced the strength of the Asian monsoon and thus weakened the China Coastal Current toward Taiwan. The decline of larval anchovy during ENSO may be due to reduced China Coastal Current, which is important in facilitating the spawning migration of the Japanese anchovy. [source]

    Modeling the influence of oceanic-climatic changes on the dynamics of Pacific saury in the northwestern Pacific using a life cycle model

    Abstract A life cycle model for Pacific saury (Cololabis saira) was developed to clarify the possible causes of interannual and decadal variability in its abundance. In the model, the population of saury is composed of two spawning cohorts: one spawned in the Kuroshio region during autumn,winter and the other spawned in the Kuroshio-Oyashio Transition Zone during winter,spring. The life cycle of saury was divided into six stages: namely egg, larval, juvenile, young, immature and adult stages. The life cycle model combines growth, survival, fishing and reproductive processes, in which the effects of sea surface temperature (SST) in the Kuroshio region and El Niño-Southern Oscillation (ENSO) events on the winter-spawning cohorts, the effects of SST in the Oyashio region on the spring-spawning cohorts, and the effects of fishing on the two spawning cohorts are taken into account. Results of basic modeling, in which environments are assumed stable and the stock is affected by fishing only, shows that the interannual fluctuations in the abundance are small and could hardly explain the observed large annual changes in abundance. On the contrary, results of modeling incorporating the effects of oceanic-climatic changes corresponded well with actual interannual-decadal variations in abundance. These results suggest the following environmental effects: (1) SST in the Kuroshio region affects decadal changes in abundance; (2) ENSO events influence the survival of the winter spawning cohort and result in large interannual variations in the abundance. It is concluded that large-scale climatic and oceanic changes strongly affect the abundance of saury. [source]

    Copepod species diversity and climate variability in the tropical Atlantic Ocean

    Sergey A. Piontkovski
    Abstract A database synthesized from 19 oceanographic expeditions conducted by the former Soviet Union was used to analyse interannual patterns in copepod species diversity in the tropical Atlantic. Mesozooplankton was collected predominately in vertical hauls through the upper 100 m with Juday nets. The samples from 744 oceanographic stations were identified and enumerated to the species level. To assess species diversity, the Shannon diversity index was used. On the interdecadal scale, no statistically confirmed trend was found in species diversity change over the years sampled (1963,89). Multiple regression analysis indicated that interannual fluctuations of the South Atlantic High (pressure and latitude), the Azores High longitude and El Niño,Southern Oscillation (ENSO) index could explain 87% of species diversity fluctuations. Possible mechanisms that drive interannual fluctuations of species diversity are discussed. [source]

    Regeneration patterns and persistence of the fog-dependent Fray Jorge forest in semiarid Chile during the past two centuries

    Abstract The persistence of rainforest patches at Fray Jorge National Park (FJNP) in semiarid Chile (30°40,S), a region receiving approximately 147 mm of annual rainfall, has been a source of concern among forest managers. These forests are likely dependent on water inputs from oceanic fog and their persistence seems uncertain in the face of climate change. Here, we assessed tree radial growth and establishment during the last two centuries and their relation to trends in climate and canopy disturbance. Such evaluation is critical to understanding the dynamics of these semiarid ecosystems in response to climate change. We analyzed forest structure of six forest patches (0.2,22 ha) in FJNP based on sampling within 0.1 ha permanent plots. For the main canopy species, the endemic Aextoxicon punctatum (Aextoxicaceae), we used tree-ring analysis to assess establishment periods, tree ages, growing trends and their relation to El Niño Southern Oscillation (ENSO), rainfall, and disturbance. The population dynamics of A. punctatum can be described by a continuous regeneration mode. Regeneration of A. punctatum was sensitive to different canopy structures. Growth release patterns suggest the absence of large scale human impact. Radial growth and establishment of A. punctatum were weakly correlated with rainfall and ENSO. If water limits forests patch persistence, patches are likely dependent on the combination of fog and rain water inputs. Forest patches have regenerated continuously for at least 250 years, despite large fluctuations in rainfall driven by ENSO and a regional decline in rainfall during the last century. Because of the positive influence on fog interception, forest structure should be preserved under any future climate scenario. Future research in FJNP should prioritize quantifying the long-term trends of fog water deposition on forests patches. Fog modeling is crucial for understanding the interplay among physical drivers of water inputs under climate change. [source]

    Herbivory and plant growth rate determine the success of El Niño Southern Oscillation-driven tree establishment in semiarid South America

    GLOBAL CHANGE BIOLOGY, Issue 12 2006
    Abstract While climatic extremes are predicted to increase with global warming, we know little about the effect of climatic variability on biome distribution. Here, we show that rainy El Niño Southern Oscillation (ENSO) events can enhance tree recruitment in the arid and semiarid ecosystems of north-central Chile and northwest Peru. Tree-ring studies in natural populations revealed that rainy El Niño episodes have triggered forest regeneration in Peru. Field experiments indicate that tree seedling recruitment in Chile is much less successful than in Peru due mostly to larger mortality caused by herbivores. The dramatic impact of herbivores in Chile was derived from the combined result of slower plant growth and the presence of exotic herbivores (European rabbits and hares). The interplay of herbivory and climatic effects we demonstrated implies that rainy ENSO events may represent ,windows of opportunity' for forest recovery if herbivore pressure is minimized at the right moment. [source]

    Climate,growth relationships of tropical tree species in West Africa and their potential for climate reconstruction

    Abstract Most tropical regions are facing historical difficulties of generating biologically reconstructed long-term climate records. Dendrochronology (tree-ring studies) is a powerful tool to develop high-resolution and exactly dated proxies for climate reconstruction. Owing to the seasonal variation in rainfall we expected the formation of annual tree rings in the wood of tropical West African tree species. In the central-western part of Benin (upper Ouémé catchment, UOC) and in northeastern Ivory Coast (Comoé National Park, CNP) we investigated the relationship between climate (precipitation, sea surface temperature (SST)) and tree rings and show their potential for climate reconstruction. Wood samples of almost 200 trees belonging to six species in the UOC and CNP served to develop climate-sensitive ring-width chronologies using standard dendrochronological techniques. The relationship between local precipitation, monthly SST anomalies in the Gulf of Guinea, El Niño- Southern Oscillation (ENSO) and ring-width indices was performed by simple regression analyses, two sample tests and cross-spectral analysis. A low-pass filter was used to highlight the decadal variability in rainfall of the UOC site. All tree species showed significant relationships with annual precipitation proving the existence of annual tree rings. ENSO signals could not be detected in the ring-width patterns. For legume tree species at the UOC site significant relationships could be found between SST anomalies in the Gulf of Guinea indicating correlations at periods of 5.1,4.1 and 2.3 years. Our findings accurately show the relationship between tree growth, local precipitation and SST anomalies in the Gulf of Guinea possibly associated with worldwide SST patterns. A master chronology enabled the reconstruction of the annual precipitation in the UOC to the year 1840. Time series analysis suggest increasing arid conditions during the last 160 years which may have large impacts on the hydrological cycles and consequently on the ecosystem dynamics and the development of socio-economic cultures and sectors in the Guinea-Congolian/Sudanian region. [source]

    Climatic signals in growth and its relation to ENSO events of two Prosopis species following a latitudinal gradient in South America

    Abstract Semiarid environments throughout the world have lost a major part of their woody vegetation and biodiversity due to the effects of wood cutting, cattle grazing and subsistence agriculture. The resulting state is typically used for cattle production, but the productivity of these systems is often very low, and erosion of the unprotected soil is a common problem. Such dry-land degradation is of great international concern, not only because the resulting state is hardly productive but also because it paves the way to desertification. The natural distribution of the genus Prosopis includes arid and semiarid zones of the Americas, Africa and Asia, but the majority of the Prosopis species are, however, native to the Americas. In order to assess a likely gradient in the response of tree species to precipitation, temperature and their connection to El Niño southern oscillation (ENSO) events, two Prosopis species were chosen along a latitudinal gradient in Latin America, from northern Peru to central Chile: Prosopis pallida from a semi-arid land in northern and southern Peru and P. chilensis from a semiarid land in central Chile. Growth rings of each species were crossdated at each sampling site using classical dendrochronological techniques. Chronologies were related with instrumental climatic records in each site, as well as with SOI and N34 series. Cross-correlation, spectral and wavelet analysis techniques were used to assess the relation of growth with precipitation and temperature. Despite the long distance among sites, the two Prosopis species presented similar responses. Thus, the two species' growth is positively correlated to precipitation, while with temperature it is not. In northern Peru, precipitation and growth of P. pallida present a similar cyclic pattern, with a period of around 3 years. On the other hand, P. pallida in southern Peru, and P. chilensis also present this cyclic pattern, but also another one with lower frequency, coinciding with the pattern of precipitation. Both cycles are within the range of the ENSO band. [source]

    Climatic effects on the phenology of lake processes

    GLOBAL CHANGE BIOLOGY, Issue 11 2004
    Monika Winder
    Abstract Populations living in seasonal environments are exposed to systematic changes in physical conditions that restrict the growth and reproduction of many species to only a short time window of the annual cycle. Several studies have shown that climate changes over the latter part of the 20th century affected the phenology and population dynamics of single species. However, the key limitation to forecasting the effects of changing climate on ecosystems lies in understanding how it will affect interactions among species. We investigated the effects of climatic and biotic drivers on physical and biological lake processes, using a historical dataset of 40 years from Lake Washington, USA, and dynamic time-series models to explain changes in the phenological patterns among physical and biological components of pelagic ecosystems. Long-term climate warming and variability because of large-scale climatic patterns like Pacific decadal oscillation (PDO) and El Niño,southern oscillation (ENSO) extended the duration of the stratification period by 25 days over the last 40 years. This change was due mainly to earlier spring stratification (16 days) and less to later stratification termination in fall (9 days). The phytoplankton spring bloom advanced roughly in parallel to stratification onset and in 2002 it occurred about 19 days earlier than it did in 1962, indicating the tight connection of spring phytoplankton growth to turbulent conditions. In contrast, the timing of the clear-water phase showed high variability and was mainly driven by biotic factors. Among the zooplankton species, the timing of spring peaks in the rotifer Keratella advanced strongly, whereas Leptodiaptomus and Daphnia showed slight or no changes. These changes have generated a growing time lag between the spring phytoplankton peak and zooplankton peak, which can be especially critical for the cladoceran Daphnia. Water temperature, PDO, and food availability affected the timing of the spring peak in zooplankton. Overall, the impact of PDO on the phenological processes were stronger compared with ENSO. Our results highlight that climate affects physical and biological processes differently, which can interrupt energy flow among trophic levels, making ecosystem responses to climate change difficult to forecast. [source]

    Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis

    Daniel Nepstad
    Abstract Severe drought in moist tropical forests provokes large carbon emissions by increasing forest flammability and tree mortality, and by suppressing tree growth. The frequency and severity of drought in the tropics may increase through stronger El Niño Southern Oscillation (ENSO) episodes, global warming, and rainfall inhibition by land use change. However, little is known about the spatial and temporal patterns of drought in moist tropical forests, and the complex relationships between patterns of drought and forest fire regimes, tree mortality, and productivity. We present a simple geographic information system soil water balance model, called RisQue (Risco de Queimada , Fire Risk) for the Amazon basin that we use to conduct an analysis of these patterns for 1996,2001. RisQue features a map of maximum plant-available soil water (PAWmax) developed using 1565 soil texture profiles and empirical relationships between soil texture and critical soil water parameters. PAW is depleted by monthly evapotranspiration (ET) fields estimated using the Penman,Monteith equation and satellite-derived radiation inputs and recharged by monthly rain fields estimated from 266 meteorological stations. Modeled PAW to 10 m depth (PAW10 m) was similar to field measurements made in two Amazon forests. During the severe drought of 2001, PAW10 m fell to below 25% of PAWmax in 31% of the region's forests and fell below 50% PAWmax in half of the forests. Field measurements and experimental forest fires indicate that soil moisture depletion below 25% PAWmax corresponds to a reduction in leaf area index of approximately 25%, increasing forest flammability. Hence, approximately one-third of Amazon forests became susceptible to fire during the 2001 ENSO period. Field measurements also suggest that the ENSO drought of 2001 reduced carbon storage by approximately 0.2 Pg relative to years without severe soil moisture deficits. RisQue is sensitive to spin-up time, rooting depth, and errors in ET estimates. Improvements in our ability to accurately model soil moisture content of Amazon forests will depend upon better understanding of forest rooting depths, which can extend to beyond 15 m. RisQue provides a tool for early detection of forest fire risk. [source]

    Fluctuations of Vanessa cardui butterfly abundance with El Niño and Pacific Decadal Oscillation climatic variables

    Abstract Annual 4th of July Butterfly Count data spanning more than 20 years are examined to explore Vanessa cardui (Painted Lady) population fluctuations with ENSO (El Niño) and Pacific Decadal Oscillation (PDO) indices. California, Colorado and Nebraska censuses exhibit a strong positive correlation with the strong El Niño events of 1982,1983 and 1997,1998 and the weaker event of 1991,1992. Regression analysis shows the population fluctuations are strongly coupled to climate variations on both short (El Niño) and longer (Pacific Decadal Oscillation) time scales. Recognizing the sensitivity to these time scales is important for predicting longer-term global climate change effects. [source]

    Sub-saharan desertification and productivity are linked to hemispheric climate variability

    Gufu Oba
    Summary Vegetation productivity and desertification in sub-Saharan Africa may be influenced by global climate variability attributable to the North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO). Combined and individual effects of the NAO and ENSO indices revealed that 75% of the interannual variation in the area of Sahara Desert was accounted for by the combined effects, with most variance attributable to the NAO. Effects were shown in the latitudinal variation on the 200 mm isocline, which was influenced mostly by the NAO. The combined indices explained much of the interannual variability in vegetation productivity in the Sahelian zone and southern Africa, implying that both the NAO and ENSO may be useful for monitoring effects of global climate change in sub-Saharan Africa. [source]

    Analysis of snow cover variability and change in Québec, 1948,2005

    Ross D. Brown
    Abstract The spatial and temporal characteristics of annual maximum snow water equivalent (SWEmax) and fall and spring snow cover duration (SCD) were analysed over Québec and adjacent area for snow seasons 1948/1949,2004/2005 using reconstructed daily snow depth and SWE. Snow cover variability in Québec was found to be significantly correlated with most of the major atmospheric circulation patterns affecting the climate of eastern North America but the influence was characterized by strong multidecadal-scale variability. The strongest and most consistent relationship was observed between the Pacific Decadal Oscillation (PDO) and fall SCD variability over western Québec. El Niño-Southern Oscillation (ENSO) was found to have a limited impact on Québec snow cover. Evidence was found for a shift in circulation over the study region around 1980 associated with an abrupt increase in sea level pressure (SLP) and decreases in winter precipitation, snow depth and SWE over much of southern Québec, as well as changes in the atmospheric patterns with significant links to snow cover variability. Trend analysis of the reconstructed snow cover over 1948,2005 provided evidence of a clear north,south gradient in SWEmax and spring SCD with significant local decreases over southern Québec and significant local increases over north-central Québec. The increase in SWEmax over northern Québec is consistent with proxy data (lake levels, tree growth forms, permafrost temperatures), with hemispheric-wide trends of increasing precipitation over higher latitudes, and with projections of global climate models (GCMs). Copyright © 2010 Her Majesty the Queen in right of Canada. Published by John Wiley & Sons. Ltd [source]

    El Niño Southern Oscillation link to the Blue Nile River Basin hydrology

    Wossenu Abtew
    Abstract The objective of this study is to evaluate the relationships of El Niño Southern Oscillation (ENSO) indices and the Blue Nile River Basin hydrology using a new approach that tracks cumulative ENSO indices. The results of this study can be applied for water resources management decision making to mitigate drought or flood impacts with a lead time of at least few months. ENSO tracking and forecasting is relatively easier than predicting hydrology. ENSO teleconnections to the Blue Nile River Basin hydrology were evaluated using spatial average basin rainfall and Blue Nile flows at Bahir Dar, Ethiopia. The ENSO indices were sea surface temperature (SST) anomalies in region Niño 3·4 and the Southern Oscillation Index (SOI). The analysis indicates that the Upper Blue Nile Basin rainfall and flows are teleconnected to the ENSO indices. Based on event correspondence and correlation analysis, high rainfall and high flows are likely to occur during La Niña years and dry years are likely to occur during El Niño years at a confidence level of 90%. Extreme dry and wet years are very likely to correspond with ENSO events as given above. The great Ethiopian famine of 1888,1892 corresponds to one of the strongest El Niño years, 1888. The recent drought years in Ethiopia correspond to strong El Niño years and wet years correspond to La Niña years. In this paper, a new approach is proposed on how to classify the strength of ENSO events by tracking consecutive monthly events through a year. A cumulative SST index value of ,5 and cumulative SOI value of , ,7 indicate strong El Niño. A cumulative SST index value of ,,5 and cumulative SOI index of ,7 indicate strong La Niña. Copyright © 2009 John Wiley & Sons, Ltd. [source]

    Regime-dependent streamflow sensitivities to Pacific climate modes cross the Georgia,Puget transboundary ecoregion

    Sean W. Fleming
    Abstract The Georgia Basin,Puget Sound Lowland region of British Columbia (Canada) and Washington State (USA) presents a crucial test in environmental management due to its combination of abundant salmonid habitat, rapid population growth and urbanization, and multiple national jurisdictions. It is also hydrologically complex and heterogeneous, containing at least three streamflow regimes: pluvial (rainfall-driven winter freshet), nival (melt-driven summer freshet), and hybrid (both winter and summer freshets), reflecting differing elevation ranges within various watersheds. We performed bootstrapped composite analyses of river discharge, air temperature, and precipitation data to assess El Niño,Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) impacts upon annual hydrometeorological cycles across the study area. Canadian and American data were employed from a total of 21 hydrometric and four meteorological stations. The surface meteorological anomalies showed strong regional coherence. In contrast, the seasonal impacts of coherent modes of Pacific circulation variability were found to be fundamentally different between streamflow regimes. Thus, ENSO and PDO effects can vary from one stream to the next within this region, albeit in a systematic way. Furthermore, watershed glacial cover appeared to complicate such relationships locally; and an additional annual streamflow regime was identified that exhibits climatically driven non-linear phase transitions. The spatial heterogeneity of seasonal flow responses to climatic variability may have substantial implications to catchment-specific management and planning of water resources and hydroelectric power generation, and it may also have ecological consequences due to the matching or phase-locking of lotic and riparian biological activity and life cycles to the seasonal cycle. The results add to a growing body of literature suggesting that assessments of the streamflow impacts of ocean,atmosphere circulation modes must accommodate local hydrological characteristics and dynamics. Copyright © 2007 John Wiley & Sons, Ltd. The copyright in Paul H. Whitfield's contribution belongs to the Crown in right of Canada and such copyright material is reproduced with the permission of Environment Canada. [source]

    Effects of the El Niño,southern oscillation on temperature, precipitation, snow water equivalent and resulting streamflow in the Upper Rio Grande river basin

    Songweon Lee
    Abstract Snowmelt runoff dominates streamflow in the Upper Rio Grande (URG) basin of New Mexico and Colorado. Annual variations in streamflow timing and volume at most stations in the region are strongly influenced by the El Niño,southern oscillation (ENSO) through its modulation of the seasonal cycles of temperature and precipitation, and hence on snow accumulation and melting. After removing long-term trends over the study period (water years 1952,99), the dependence of monthly temperature, precipitation, snow water equivalent (SWE) at snowcourse stations, and streamflow throughout the URG on ENSO was investigated using composite analyses of the detrended residuals and through dependence of the residuals on the Climate Prediction Center southern oscillation index during the preceding summer and fall. The climate of La Niña years was found to differ significantly from either El Niño or neutral years. Moreover, significant climatological ENSO-related effects are confined to certain months, predominantly at the beginning and end of the winter season. In particular, March of La Niña years is significantly warmer and drier than during either El Niño or neutral years, and November of El Niño years is significantly colder and wetter. Differences in temperature and precipitation lead to significant differences in SWE and streamflow in the URG between the three ENSO phases. Copyright © 2004 John Wiley & Sons, Ltd. [source]

    Association of early annual peak influenza activity with El Niño southern oscillation in Japan

    Hassan Zaraket
    Background, Seasonality characterizing influenza epidemics suggests susceptibility to climate variation. El Niño southern oscillation (ENSO), which involves two extreme events, El Niño and La Niña, is well-known for its large effects on inter-annual climate variability. The influence of ENSO on several diseases has been described. Objectives, In this study, we attempt to analyze the possible influence of ENSO on the timing of the annual influenza activity peak using influenza-like illness report data in Japan during 1983,2007. Materials, Influenza surveillance data for 25 influenza epidemics, available under the National Epidemiological Surveillance of the Infectious Diseases, was used in this study. ENSO data were obtained from the Japan Meteorological Agency. Results, Influenza-like illness peak week varied largely during the study period, ranging between 4th and 11th weeks (middle of winter to early spring). The average of peak week during ENSO cycles (n = 11, average = 4·5 ± 0·9) was significantly earlier than in non-ENSO years (n = 14, average = 7·6 ± 2·9; P = 0·01), but there was no significant difference in the peak timing between hot (El Niño) and cold (La Niña) phases. Earlier peaks of influenza activity were observed in 16, out of 25, epidemics. These coincided with 10 (90·9%) out of 11 ENSO and 6 (85·7%) out of seven large-scale epidemics. Conclusion, Influenza activity peak occurred earlier in years associated with ENSO and/or large scale epidemics. [source]

    A multi-time scale Australian monsoon index

    Yoshiyuki Kajikawa
    Abstract A broad-scale Australian monsoon index (AUSMI) describing multi-time scale variations is defined by using 850 hPa zonal wind averaged over the area (5°S,15°S, 110°E,130°E). This circulation index reflects monsoonal rainfall variability over Northern Australia and maritime continent. The index can be used to depict the seasonal cycle (for instance the onset) and measure the intraseasonal, interannual, and interdecadal variations of the Australian monsoon. The interannual variation of the Australian monsoon onset determined by the AUSMI agrees well with that derived from the rainfall and winds at Darwin in the previous studies. We found a significant anti-correlation between the monsoon onset date and the seasonal (DJF) mean AUSMI anomalies; namely an early onset is accompanied by a strong Australian summer monsoon and vice versa. These interannual variations are also strongly associated with El Niño-Southern Oscillation (ENSO). In contrast, the retreat dates are not significantly different between the strong and weak Australian summer monsoon years. The AUSMI is useful in monitoring the weather and climate variations of the Australian monsoon and validating the performance of climate models. Copyright © 2009 Royal Meteorological Society [source]

    Interannual and interdecadal variations of tropical cyclone activity in the South China Sea

    Andy Zung-Ching Goh
    Abstract This study attempts to identify the factors affecting annual tropical cyclone (TC) activity in the South China Sea (SCS) using data during the period 1965,2005. The results indicate that the total number of TCs and number of TCs entering the SCS from the Western North Pacific are below normal in El Niño events but above normal during La Niña events. However, for TCs formed inside the SCS, the difference in numbers between the two phases of the El Niño-Southern Oscillation (ENSO) is not as obvious. In addition, the positive phase of the Pacific Decadal Oscillation (PDO) generally favours less TCs in all categories, while the negative PDO phase favours more. These results may be explained by the fact that the ENSO and the PDO affect TC behaviour through altering the conditions in the WNP to be favourable or unfavourable for TC genesis and movement into the SCS. Copyright © 2009 Royal Meteorological Society [source]

    On the interannual wintertime rainfall variability in the Southern Andes

    M. H. González
    Abstract The paper concentrates on the analysis of the interannual variability of wintertime rainfall in the Southern Andes. Besides the socio-economic relevance of the region, mainly associated with hydroelectric energy production, the study of the climate variability in that area has not received as much attention as others along the Andes. The results show that winter rainfall explains the largest percentage of regional total annuals. A principal component analysis (PCA) of the winter rainfall anomalies showed that the regional year-to-year variability is mostly explained by three leading patterns. While one of them is significantly associated with both the El Niño Southern Oscillation (ENSO), and the Southern Annular Mode (SAM), the other two patterns are significantly related to interannual changes of the sea surface temperature (SST) anomalies in the tropical Indian Ocean. Specifically, changes in the ocean surface conditions at both tropical basins induce in the atmospheric circulation the generation of Rossby wave trains that extend along the South Pacific towards South America, and alter the circulation at the region under study. The relationship between variability in the Indian Ocean and the Andes climate variability has not been previously addressed. Therefore, this result makes a significant contribution to the identification of the sources of predictability in South America with relevant consequences for future applications in seasonal predictions. Copyright © 2009 Royal Meteorological Society [source]

    Effect of late 1970's climate shift on tropospheric biennial oscillation,role of local Indian Ocean processes on Asian summer monsoon

    Prasanth A Pillai
    Abstract The tropical climate has undergone noticeable changes on interdecadal time scales. The climate shift that occurred in the late 1970s attained enormous attention owing to its global-scale variations in ocean temperature, heat content and El Nino Southern Oscillation (ENSO) properties. Earlier studies presented the effect of this shift on ENSO and the Asian summer monsoon,ENSO relationship. The present study is an attempt to investigate the effect of late 1970's climate shift on tropospheric biennial oscillation (TBO), which is an important tropical phenomenon that includes both air,sea processes in the tropical Indian and Pacific Ocean regions. TBO is the tendency for the Asian,Australian monsoon system to alternate between relatively strong and weak years. The study comprises a detailed analysis of the TBO cycle in the time periods before (1951,1975) and after (1978,2002) the climate shift in 1976 with the help of National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) data sets of 200-hPa velocity potential; the Indian Ocean sea surface temperature (SST) and circulation are more obvious after the shift, although they were significant in the Pacific Ocean before 1976. The effect of ENSO in the biennial cycle is reduced with climate shift. The persistence of Asian-to-Australian summer monsoon has weakened in recent decades, as it is controlled by ENSO. Local oceanic processes in the Indian Ocean and local monsoon Hadley circulation have an increased role in the biennial oscillation of the Asian summer monsoon after 1976. Copyright © 2009 Royal Meteorological Society [source]

    Interpreting variability in global SST data using independent component analysis and principal component analysis

    Seth Westra
    Abstract Component extraction techniques are used widely in the analysis and interpretation of high-dimensional climate datasets such as global sea surface temperatures (SSTs). Principal component analysis (PCA), a frequently used component extraction technique, provides an orthogonal representation of the multivariate dataset and maximizes the variance explained by successive components. A disadvantage of PCA, however, is that the interpretability of the second and higher components may be limited. For this reason, a Varimax rotation is often applied to the PCA solution to enhance the interpretability of the components by maximizing a simple structure. An alternative rotational approach is known as independent component analysis (ICA), which finds a set of underlying ,source signals' which drive the multivariate ,mixed' dataset. Here we compare the capacity of PCA, the Varimax rotation and ICA in explaining climate variability present in globally distributed SST anomaly (SSTA) data. We find that phenomena which are global in extent, such as the global warming trend and the El Niño-Southern Oscillation (ENSO), are well represented using PCA. In contrast, the Varimax rotation provides distinct advantages in interpreting more localized phenomena such as variability in the tropical Atlantic. Finally, our analysis suggests that the interpretability of independent components (ICs) appears to be low. This does not diminish the statistical advantages of deriving components that are mutually independent, with potential applications ranging from synthetically generating multivariate datasets, developing statistical forecasts, and reconstructing spatial datasets from patchy observations at multiple point locations. Copyright © 2009 Royal Meteorological Society [source]

    Trend patterns in global sea surface temperature

    Susana M. Barbosa
    Abstract Isolating long-term trend in sea surface temperature (SST) from El Niño southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied to isolate low-frequency variability from time series of SST anomalies for the 1982,2006 period. The first derived trend pattern reflects a systematic decrease in SST during the 25-year period in the equatorial Pacific and an increase in most of the global ocean. The second trend pattern reflects mainly ENSO variability in the Pacific Ocean. The examination of the contribution of these low-frequency modes to the globally averaged SST fluctuations indicates that they are able to account for most (>90%) of the variability observed in global mean SST. Trend-EOFs perform better than conventional EOFs when the interest is on low-frequency rather than on maximum variance patterns, particularly for short time series such as the ones resulting from satellite retrievals. Copyright © 2009 Royal Meteorological Society [source]

    China's snow disaster in 2008, who is the principal player?

    Gao Hui
    Abstract The unprecedented snow disaster in January 2008 brought serious human and economic losses to China. It has been suggested that the La Nina event is the principal cause. But analysis indicates that in December 2007, the circulation patterns in the tropical regions are quite similar with those in January 2008. In contrast large differences existed at high latitudes, especially the Siberia high (SH) and the north polar vortex (NPV). The differences can also be found between other extreme heavy and light snow years. In the extreme heavy (light) snow years, the SH is stronger (weaker) and the NPV is deeper (shallower). But these extreme snow events don't correspond to ENSO events well. Statistical results also indicate that both the SH and the NPV are independent of ENSO. So, rather than the La Nina event, the abnormal circulations at the high latitudes may play a more crucial role in making this snow disaster. Copyright © 2009 Royal Meteorological Society [source]

    Multi-annual dry episodes in Australian climatic variability

    B. G. Hunt
    Abstract The output from a 10 000-year simulation with the CSIRO Mark 2 coupled global climatic model has been analysed to investigate the occurrence of multi-year dry episodes for three selected regions of Australia, specifically, the northeast, southeast and southwest of the continent. Results are presented for dry episodes lasting for 8 or more years. An episode is defined as a time interval having consecutive negative rainfall anomalies, but not necessarily a major drought, for each year of the episode. The hydrological consequences of such an episode can persist for over a century. Typically about 30 episodes are found over the 10 000 years of the simulation for each of the three regions. There is little synchronicity between the regions in the occurrence of the dry episodes. While there is an El Nino/Southern Oscillation (ENSO) influence associated with these episodes, it is not continuous over the duration of an episode. Composites of sea surface temperature anomalies over an episode highlight the limited presence of ENSO events. The occurrence of the dry episodes for all three regions is essentially random, with multi-centennial periods without an episode, and episodes at multi-decadal frequency at other times. Following a discussion of possible mechanistic influences, it is concluded that stochastic forcing is responsible for the occurrence of dry episodes. This implies that there is no predictability associated with the initiation, duration or termination of individual dry episodes. This also suggests that the 2000,2007 dry episodes occurring over much of Australia may not be caused by the greenhouse effect. Such an episode has a return period of between 200 and 300 years based on the mean frequency of occurrence in the present simulation. Copyright © 2008 Royal Meteorological Society [source]

    Interannual variability of boreal summer rainfall in the equatorial Atlantic

    Guojun Gu
    Abstract Tropical Atlantic rainfall variations during boreal summer (June,July,August (JJA)) are quantified by means of a 28-year (1979,2006) monthly precipitation dataset from the Global Precipitation Climatology Project (GPCP). Rainfall variability during boreal spring (March,April,May (MAM)) is also examined for comparison in that the most intense interannual variability is usually observed during this season. Comparable variabilities in the Atlantic maritime intertropical convergence zone (ITCZ) (15° ,35°W) strength (PITCZ) are found during both seasons. Variations in the ITCZ's latitudinal location (LatITCZ) during JJA, however, are much weaker than during MAM. PITCZ and LatITCZ are shown to be closely associated with sea surface temperature (SST) anomalies in both the tropical Atlantic and Pacific. Within the tropical Atlantic, the Atlantic Niño events (Atl3) and SST anomalies in the tropical North Atlantic (TNA) are the two major local factors modulating surface rainfall patterns and variations. Atl3 is significantly correlated with PITCZ and LatITCZ during JJA and MAM. TNA is significantly correlated to PITCZ during JJA but not to LatITCZ. In contrast, TNA is significantly correlated to LatITCZ during MAM but its correlation with PITCZ is weak. The impact of the El Niño-Southern Oscillation (ENSO) events (Nino3.4) is observed during both seasons, while the correlation between Nino3.4 and LatITCZ is slightly weak. However, with the effects of Atl3 and TNA removed, the ENSO tends to have a quite limited direct impact on the tropical Atlantic, specifically over the open ocean. High second-order partial correlation between Nino3.4 and rainfall is generally confined to the western basin and over the northeastern South America. Therefore, during JJA, the two local SST modes are of dominance for the tropical Atlantic rainfall variability. Nevertheless, the ENSO seems to still play an active role in modulating surface zonal wind anomalies in the western basin and then the Atlantic Niño mode. Copyright © 2008 Royal Meteorological Society [source]

    The impact of the positive Indian Ocean dipole on Zimbabwe droughts

    D. Manatsa
    Abstract A comparative study of the impact of the anomalous positive Indian Ocean SST gradient, referred to as the Indian Ocean Dipole/Zonal Mode (IODZM), and El Niño-Southern Oscillation (ENSO) on Zimbabwe seasonal rainfall variability for the period 1940,1999, is documented. Composite techniques together with simple and partial correlation analyses are employed to segregate the unique association related to IODZM/ENSO with respect to the Zimbabwe seasonal rainfall. The analysis reveals that the IODZM impact on the country's summer rainfall is overwhelming as compared to that of ENSO when the two are in competition. The IODZM influence remains high (significant above 99% confidence level), even after the influence of ENSO has been removed, while that of ENSO collapses to insignificance (even at 90% confidence level) when the IODZM contribution is eliminated. The relationship between ENSO and Zimbabwe seasonal rainfall seems to be sustained through El Niño occurring in the presence of positive IODZM events. However, when the co-occurring positive IODZM and El Niño events are removed from the analysis, it is apparently clear that ENSO has little to do with the country's rainfall variability. On the other hand, positive IODZM is mostly associated with the rainfall deficits, whether or not it co-occurs with El Niño. However, the co-occurrence of the two events does not necessarily suggest that El Niño influences droughts through the positive IODZM events. The El Niño event components during co-occurrence seem to be unrelated (at least linearly) to the droughts, while the positive IODZM events display a relatively strong relationship that is significant above the 95% confidence level. It thus becomes important to extend the study of this nature to cover the whole of southern Africa, so that the extent of the impact of the phenomena can be realized over the whole region. Copyright © 2008 Royal Meteorological Society [source]

    Impacts of the basin-wide Indian Ocean SSTA on the South China Sea summer monsoon onset

    Yuan Yuan
    Abstract This article explores the impacts of the Indian Ocean basin-scale sea surface temperature anomaly (SSTA) on the South China Sea (SCS) summer monsoon onset. Basin-wide warming in the tropical Indian Ocean (TIO) is found to occur in the spring following an El Niño event, and the opposite occurs for a La Niña event. Such changes of the Indian Ocean SSTA apparently prolong the El Niño-Southern Oscillation (ENSO) effects on the subsequent Asian summer monsoon, mainly through modifying the strength of the Philippine Sea anti-cyclone. Warming in the TIO induces an anomalous reversed Walker circulation over the tropical Indo,Pacific Ocean, which leads to descending motion, and hence suppressed convection in the western Pacific. The intensified Philippine Sea anti-cyclone in May and June advances more westward and prevents the extension of the Indian Ocean westerly flow into the SCS region, thereby causing a late SCS monsoon onset. The case is opposite for the TIO cooling such that the Philippine Sea anti-cyclone weakens and retreats eastward, thus favouring an early onset of the SCS monsoon. Copyright © 2008 Royal Meteorological Society [source]