Energy Relationships (energy + relationships)

Distribution by Scientific Domains


Selected Abstracts


Species,energy relationships and habitat complexity in bird communities

ECOLOGY LETTERS, Issue 8 2004
Allen H. Hurlbert
Abstract Species,energy theory is a commonly invoked theory predicting a positive relationship between species richness and available energy. The More Individuals Hypothesis (MIH) attempts to explain this pattern, and assumes that areas with greater food resources support more individuals, and that communities with more individuals include more species. Using a large dataset for North American birds, I tested these predictions of the MIH, and also examined the effect of habitat complexity on community structure. I found qualitative support for the relationships predicted by the MIH, however, the MIH alone was inadequate for fully explaining richness patterns. Communities in more productive sites had more individuals, but they also had more even relative abundance distributions such that a given number of individuals yielded a greater number of species. Richness and evenness were also higher in structurally complex forests compared to structurally more simple grasslands when controlling for available energy. [source]


Studies on the kinetics of imidazolium fluorochromate oxidation of some meta - and para -substituted anilines in nonaqueous media

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 3 2006
D. S. Bhuvaneshwari
The imidazolium fluorochromate (IFC) oxidation of meta - and para -substituted anilines, in seven organic solvents, in the presence of p -toluenesulfonic acid (TsOH) is first order in IFC and TsOH and is zero order with respect to substrate. The IFC oxidation of 15 meta - and para -substituted anilines at 299,322 K complies with the isokinetic relationship but not to any of the linear free energy relationships; the isokinetic temperature lies within the experimental range. The specific rate of oxidizing species-anilines reaction (k2) correlates with substituent constants affording negative reaction constants. The rate data failed to correlate with macroscopic solvent parameters such as ,r and ENT. A correlation of rate data with Kamlet,Taft solvatochromic parameters (,, ,, ,*) suggests that the specific solute,solvent interactions play a major role in governing the reactivity, and the observed solvent effects have been explained on the basis of solute,solvent complexation. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 166,175, 2006 [source]


linear free energy relationships;

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 11 2007
UB3LYP/6-31G(d
The substituent effect on the reactivity of the CN bond of molecular ions of 4-substituted N -(2-furylmethyl)anilines toward two dissociation pathways was studied. With this aim, six of these compounds were analyzed by mass spectrometry using electron ionization with energies between 7.8 and 69.9 eV. Also, the UB3LYP/6-31G (d,p) and UHF/6-31G (d, p) levels of theory were used to calculate the critical energies (reaction enthalpies at 0 K) of the processes that lead to the complementary ions [C5H5O]+ and [M , C5H5O]+, assuming structures that result from the heterolytic and homolytic CN bond cleavages of the molecular ions, respectively. A kinetic approach proposed in the 1960s was applied to the mass spectral data to obtain the relative rate coefficients for both dissociation channels from ratios of the peak intensities of these ions. Linear relationships were obtained between the logarithms of the relative rate coefficients and the calculated critical energies and other thermochemical properties, whose slopes showed to be conditioned by the energy provided to the compounds within the ion source. Moreover, it was found that the dissociation that leads to [C5H5O]+ is a process strongly dependent upon the electron withdrawing or donating properties of the substituent, favored by those factors that destabilize the molecular ion. On the contrary, the dissociation that leads to [M , C5H5O]+ is indifferent to the polar electronic effects of the substituent. The abundance of both products was governed by the rule of Stevenson,Audier, according to which the major ion is the one of less negative electronic affinity. Copyright © 2007 John Wiley & Sons, Ltd. [source]


A two-phase analysis of solute partitioning into the stratum corneum

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2006
Johannes M. Nitsche
Abstract An analysis is presented of partition coefficients KSC/w describing solute distribution into fully hydrated stratum corneum (SC) from dilute aqueous solution (w). A comprehensive database is compiled from the experimental literature covering more than eight decades in the octanol/water partition coefficient Ko/w. It is analyzed according to a two-phase model following that of Anderson, Raykar, and coworkers (1988, 1989), which accounts for uptake by intercellular lipid and corneocyte (keratin plus water) phases having inherently different lipophilicities, as characterized by an SC lipid/water partition coefficient Klip/w and a partition coefficient PCpro/w quantifying cornoeocyte-phase binding. Regression of 72 data points yields useful best-fit recalibrations of power laws (or linear free energy relationships) giving Klip/w and PCpro/w as functions of Ko/w. The specific conclusions of the analysis are as follows: (i) The two-phase model offers substantial improvements over previously proposed analytical representations of KSC/w, yielding an rms error in log10KSC/w of 0.30 limited by the scatter in the data. (ii) The best-fit description of the lipid phase is given by the power law Klip/w,=,0.43 (Ko/w)0.81, suggesting about half the absolute value of Klip/w relative to previous estimates. (iii) The best-fit description of corneocyte-phase binding differs negligibly from the correlation found by Anderson, Raykar, and coworkers for the more limited set of compounds studied by them. Explicit consideration of the two-phase nature of the SC also furnishes a rational basis for predicting the effects of varying hydration state upon KSC/w. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95:649,666, 2006 [source]