Energy Donor (energy + donor)

Distribution by Scientific Domains


Selected Abstracts


Close Proximity Dibenzo[a,c]phenazine,Fullerene Dyad: Synthesis and Photoinduced Singlet Energy Transfer

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 18 2010
Rajeev K. Dubey
Abstract A dibenzo[a,c]phenazine,fullerene (DBPZ-C60) dyad in which two chromophores are linked in close proximity to each other has been synthesized and studied in detail by optical spectroscopy to explore a new energy donor,acceptor system. The dyad was prepared by Prato reaction between 11-formyldibenzo[a,c]phenazine and fullerene. 3,5-Di- tert -butylbenzyl group was introduced onto the fulleropyrrolidine unit to achieve adequate solubility of the dyad. A thorough study of the photophysical properties of the dyad and relevant reference compounds, performed by means of steady state and time resolved spectroscopic measurements, has revealed the presence of highly efficient (ca. 98,%) and extremely fast (ken = 5,×,1011 s,1) intramolecular photoinduced singlet,singlet energy-transfer process from singlet excited state of the DBPZ moiety to fullerene. In both polar and nonpolar environment transduction of singlet excited state energy governs the excited state deactivation, but the efficiency and rate of energy transfer were found to be higher in nonpolar solvents in comparison to polar. The DBPZ singlet excited state decays within 2 and 4.7 ps in toluene andbenzonitrile, respectively, via singlet,singlet energy transfer to produce a fullerene singlet excited state which decays with a life time of 1.5 ns to give a very long-lived fullerene triplet state as final populated excited state. [source]


Cationic Oligofluorene-Substituted Polyhedral Oligomeric Silsesquioxane as Light-Harvesting Unimolecular Nanoparticle for Fluorescence Amplification in Cellular Imaging

ADVANCED MATERIALS, Issue 5 2010
Kan-Yi Pu
A new bottom-up strategy is used to construct water-soluble organic/inorganic fluorescent unimolecular nanoparticles based on polyhedral oligomeric silsesquioxane (POSS) and conjugated oligoelectrolyte. Their high quantum yield, good cytocompatibility, and unique whole-cell permeability could serve as a light-harvesting energy donor to amplify the intracellular dye fluorescence for high-quality biological imaging through fluorescence resonance energy transfer (see image). [source]


Chlorin,Bacteriochlorin Energy-transfer Dyads as Prototypes for Near-infrared Molecular Imaging Probes: Controlling Charge-transfer and Fluorescence Properties in Polar Media

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2009
Hooi Ling Kee
The photophysical properties of two energy-transfer dyads that are potential candidates for near-infrared (NIR) imaging probes are investigated as a function of solvent polarity. The dyads (FbC-FbB and ZnC-FbB) contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. The dyads were studied in toluene, chlorobenzene, 1,2-dichlorobenzene, acetone, acetonitrile and dimethylsulfoxide (DMSO). In both dyads, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of ,(5,10 ps),1 and a yield of >99% in nonpolar and polar media. In toluene, the fluorescence yields (,f = 0.19) and singlet excited-state lifetimes (,,5.5 ns) are comparable to those of the benchmark bacteriochlorin. The fluorescence yield and excited-state lifetime decrease as the solvent polarity increases, with quenching by intramolecular electron (or hole) transfer being greater for FbC-FbB than for ZnC-FbB in a given solvent. For example, the ,f and , values for FbC-FbB in acetone are 0.055 and 1.5 ns and in DMSO are 0.019 and 0.28 ns, whereas those for ZnC-FbB in acetone are 0.12 and 4.5 ns and in DMSO are 0.072 and 2.4 ns. The difference in fluorescence properties of the two dyads in a given polar solvent is due to the relative energies of the lowest energy charge-transfer states, as assessed by ground-state redox potentials and supported by molecular-orbital energies derived from density functional theory calculations. Controlling the extent of excited-state quenching in polar media will allow the favorable photophysical properties of the chlorin,bacteriochlorin dyads to be exploited in vivo. These properties include very large Stokes shifts (85 nm for FbC-FbB, 110 nm for ZnC-FbB) between the red-region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (,f = 760 nm), long bacteriochlorin excited-state lifetime (,5.5 ns), and narrow (,20 nm) absorption and fluorescence bands. The latter will facilitate selective excitation/detection and multiprobe applications using both intensity- and lifetime-imaging techniques. [source]


Rational design of novel red-shifted BRET pairs: Platforms for real-time single-chain protease biosensors

BIOTECHNOLOGY PROGRESS, Issue 2 2009
Seth T. Gammon
Abstract Bioluminescence resonance energy transfer (BRET) systems to date have been dominated by use of blue-green Renilla luciferase (Rluc) as the energy donor. Although effective in many cases, the expense and unfavorable biochemical attributes of the substrate (phenylcoelenterazine) limit utility of Rluc-based BRET systems. Herein we report a series of novel BRET pairs based on luciferases that utilize D -luciferin, resulting in red-shifted photonic outputs, favorable biochemical attributes, and increased efficacy. We developed a modified Förster equation to predict optimal BRET luciferase donor-fluorophore pairs and identified tdTomato as the optimal red fluorophore acceptor for click beetle green luciferase (CBG). A prototypical single-chain protease biosensor, capable of reporting on executioner caspase activity in live cells and in real-time, was generated by inserting a DEVD linker between CBG and tdTomato and validated in vitro with recombinant caspases and in cellulo with apoptosis-sensitive and -resistant cell lines. High signal-to-noise ratios (,33) and Z, factors (0.85) were observed in live cell longitudinal studies, sufficient for high-throughput screening. Thus, we illustrate a general methodology for the rational design of new BRET systems and provide a novel single-chain BRET protease biosensor that is long lived, red-shifted, and utilizes D -luciferin. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


White-Light-Emitting DNA (WED)

CHEMISTRY - A EUROPEAN JOURNAL, Issue 37 2009
Reji Varghese Dr.
White knight: A DNA-based energy donor,acceptor couple exhibits red fluorescence in the single strand that changes to white light upon duplex formation in a completely reversible manner (see picture). [source]


Molecular Distortion Effect on ff-Emission in a Pr(III) Complex with 4,7-Diphenyl-1,10-Phenanthroline

CHEMPHYSCHEM, Issue 9 2007
Ayumi Ishii
Abstract The electronic and structural behaviour of a Pr(III) complex with 4,7-diphenyl-1,10-phenanthroline, [Pr(bathophen)2(NO3)3], is investigated with respect to the effect of configuration changes on the Pr(III) centre. [Pr(bathophen)2(NO3)3] luminesces from the excited states of the ligand and the metal ion. The fluorescence, ff-emission (1D2,3H4), and phosphorescence bands appear at 394, 608.2 and 482 nm, respectively, in the solid state. In acetonitrile, the complex also shows multiple emissions. From the time-resolved emission and the lifetime measurements, the excitation energy-transfer in [Pr(bathophen)2(NO3)3] is clarified, that is, the upper excited triplet level of the ligand acts as an energy donor, while the 1D2 levels of Pr(III) is the acceptor. Additionally, the emission phenomena of the complex can be modified by molecular distortion, particularly by rotation of the phenyl groups in the ligand. [source]


Dual Luminescent Dinuclear Gold(I) Complexes of Terpyridyl-Functionalized Alkyne Ligands and Their Efficient Sensitization of EuIII and YbIII Luminescence

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 22 2010
Xiu-Ling Li
Abstract Reaction of (tpyC6H4C,CAu)n {tpyC6H4C,CH = 4,-(4-ethynylphenyl)-2,2,:6,,2,-terpyridine} with diphosphane ligands Ph2P(CH2)xPPh2 (x = 2 dppe, 3 dppp, 4 dppb, 5 dpppen, 6 dpph) in CH2Cl2 afforded the corresponding dual luminescent binuclear gold(I) complexes [(tpyC6H4C,CAu)2(,-dppe)] (1), [(tpyC6H4C,CAu)2(, - dppp)] (2), [(tpyC6H4C,CAu)2(,-dppb)] (3), [(tpyC6H4C,CAu)2(,-dpppen)] (4), [(tpyC6H4C,CAu)2(,-dpph)] (5). Crystal structural analysis of complexes 1·2CH2Cl2 and 2·2CH2Cl2 show that the terpyridine moieties are free of coordination in these gold(I)-acetylide-phosphane complexes. Spectrophotometric titration between complex 1 and [Eu(tta)3] (Htta = 2-thenoyltrifluoroacetone) or [Yb(hfac)3(H2O)2] (Hhfac = hexafluoroacetylacetone) gave a 2:1 ratio between Ln(,-diketonate)3 (Ln = Eu, Yb) units and the complex 1 moiety, indicating the formation of Au2Ln2 complexes. Both the luminescence titrations and the luminescence quantum yields of Au2Ln2 (Ln = Eu, Yb) solutions show that the energy transfer occurs efficiently from the binuclear gold(I) antennas 1,5 to EuIII and YbIII centers, and all complexes 1,5 are good energy donors for sensitization of visible and NIR luminescence of EuIII and YbIII ions. [source]


Multi-Colour Electroluminescence of Dendronic Antennae Containing Pyrenes as Light Harvesters

CHEMPHYSCHEM, Issue 3 2010
Umberto Giovanella Dr.
Abstract Dendronic antennae systems containing pyrene units as energy donors and a styrylpyridinium derivative as energy acceptor show efficient energy transfer from the green-emitting pyrene excimer to the red-emitting acceptor. For the third dendron generation the effective screening of the pyrene units on the acceptor provides thin films showing bright red emission. Single-layer light-emitting diodes prepared by properly balancing the dendrons and donor units concentration in polyvinylcarbazole show electroluminescence from the blue, green and red components of the monomeric donor, the donor excimer and the acceptor when excitons are generated in the polymer and subsequently transferred to the molecules by resonant energy transfer. [source]