Energy Dependence (energy + dependence)

Distribution by Scientific Domains


Selected Abstracts


Energy transfer in master equation simulations: A new approach

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 12 2009
John R. BarkerArticle first published online: 8 OCT 200
Collisional energy transfer plays a key role in recombination, unimolecular, and chemical activation reactions. For master equation simulations of such reaction systems, it is conventionally assumed that the rate constant for inelastic energy transfer collisions is independent of the excitation energy. However, numerical instabilities and nonphysical results are encountered when normalizing the collision step-size distribution in the sparse density of states regime at low energies. It is argued here that the conventional assumption is not correct, and it is shown that the numerical problems and nonphysical results are eliminated by making a plausible assumption about the energy dependence of the rate coefficient for inelastic collisions. The new assumption produces a model that is more physically realistic for any reasonable choice of collision step-size distribution, but more work remains to be done. The resulting numerical algorithm is stable and noniterative. Testing shows that overall accuracy in master equation simulations is better with this new approach than with the conventional one. This new approach is appropriate for all energy-grained master equation formulations. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 748,763, 2009 [source]


Dose dependence of radiation damage for protein crystals studied at various X-ray energies

JOURNAL OF SYNCHROTRON RADIATION, Issue 1 2007
Nobutaka Shimizu
Radiation damage to protein crystals is the most serious problem in obtaining accurate structures from protein crystallography. In order to examine the photon energy dependence of radiation damage, 12 to 15 data sets from each of nine tetragonal lysozyme crystals were collected at nine different X-ray energies (6.5, 7.1, 8.3, 9.9, 12.4, 16.5, 20.0, 24.8 and 33.0,keV) using beamline BL41XU at SPring-8. All results were compared on the basis of absorbed dose, expressed in Gray (Gy). Crystallographic statistics, such as the values of lattice constants, Rmerge and I/,(I), for each data set degraded at all nine energies as the exposure time for each crystal increased. In all data sets, radiation damage was observed after the absorbed dose exceeded 106,Gy. However, from the point of view of crystallographic statistics normalized to the absorbed dose, no clear dependence on photon energy was observed in these results. Structural refinement showed that the average B -factor for the last data set was larger than that for the first data set at all energies tested. However, no energy dependence of radiation damage on B -factor was found. Furthermore, disruption of disulfide bonds due to radiation damage was observed in electron density maps even at the highest photon energy (33,keV) used in this study. Therefore, these results suggest that radiation damage in the energy range investigated could be evaluated based on absorbed dose without energy dependence, and that it is important to minimize the absorbed dose in a crystal sample for obtaining an accurate protein structure. [source]


Thermalization and recombination in exponential band tail states

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2006
M. Niehus
Abstract We present an analytical model that combines the complementary experimental evidence of spatial dispersion (DAP recombination) and energetic dispersion (band tails). The model describes the competition between thermalization and recombination of excess carriers trapped in exponentially distributed (in energy), discrete localized (in space) states. We use the energy dependence of the relaxation rates to derive the energy and time dependence of sub gap photoluminescence. The model predicts that the yellow luminescence band (YLB) and blue luminescence band (BLB) commonly observed in GaN are not separate entities, but reflect the competition of thermalization and recombination. A distinct kink is observed in transient PL in the microsecond range, in the limiting cases of strong tailing and/or low temperatures, indicating the transition from thermalization-limited to (radiative) recombination-limited excess carrier relaxation. Both prediction are in line with experiment, and able to resolve interpretational difficulties. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Modeling solar cell degradation in space: A comparison of the NRL displacement damage dose and the JPL equivalent fluence approaches,

PROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 2 2001
S. R. Messenger
The method for predicting solar cell degradation in space radiation environments developed recently at the US Naval Research Laboratory (NRL) is compared in detail with the earlier method developed at the US Jet Propulsion Laboratory (JPL). Although both methods are similar, the key difference is that in the NRL approach, the energy dependence of the damage coefficients is determined from a calculation of the nonionizing energy loss (NIEL) and requires relatively few experimental measurements, whereas in the JPL method the damage coefficients have to be determined using an extensive set of experimental measurements. The end result of the NRL approach is a determination of a single characteristic degradation curve for a cell technology, which is measured against displacement damage dose rather than fluence. The end-of-life (EOL) cell performance for a particular mission can be read from the characteristic curve once the displacement damage dose for the mission has been determined. In the JPL method, the end result is a determination of the equivalent 1,MeV electron fluence, which would cause the same level of degradation as the actual space environment. The two approaches give similar results for GaAs/Ge solar cells, for which a large database exists. Because the NRL method requires far less experimental data than the JPL method, it is more readily applied to emerging cell technologies for which extensive radiation measurements are not available. The NRL approach is being incorporated into a code named SAVANT by researchers at NASA Glenn Research Center. The predictions of SAVANT are shown to agree closely with actual space data for GaAs/Ge and CuInSe2 cells flown on the Equator-S mission. Published in 2001 by John Wiley & Sons, Ltd. [source]