Home About us Contact | |||
Energetic Requirements (energetic + requirement)
Selected AbstractsSex, Rank and Age Differences in the Japanese Macaque (Macaca fuscata yakui) Participation in Inter-Group EncountersETHOLOGY, Issue 5 2005Bonaventura Majolo In many species interactions among group are often characterized by agonistic behaviour. Although animals may participate in inter-group encounters in different ways, depending on their energetic requirements, reproductive tactics, and/or developmental stage, the proximate causes affecting an animal's participation in inter-group encounters are still poorly understood. Indeed, many studies have analysed the behaviour of males and females during inter-group encounters without considering the importance of additional factors (e.g. rank). This study focuses on wild non-provisioned Japanese macaques (Macaca fuscata yakui) living on Yakushima Island, Japan. It aims to determine how monkeys of different sex, age, and rank behave during inter-group encounters and it discusses the implications and consequences of their behaviour on group composition and male dispersal. Males participated significantly more than females in inter-group encounters, by displaying more aggressive or affiliative behaviour. High-ranking and/or adult males were more aggressive than low-ranking and/or subadult males during encounters occurring in the mating season and they also showed more herding behaviour. This trend was not found in inter-group encounters occurring during the non-mating season. Finally, males which then emigrated to new groups were low-ranking and/or subadult individuals. Those males displayed more affiliative behaviour towards foreign males than males which did emigrate. These data indicate that in non-territorial species with male dominance over female and high competition for mating partners males play an active, and often aggressive, role during inter-group encounter while female participation is scarce. Factors such as age, rank and period of the year (in seasonally breeding species) have to be taken into considerations when analysing interactions between groups and their effects on group composition and social behaviour. [source] Overwinter mass loss of snowshoe hares in the Yukon: starvation, stress, adaptation or artefact?JOURNAL OF ANIMAL ECOLOGY, Issue 1 2006KAREN E. HODGES Summary 1Overwinter mass loss can reduce energetic requirements in mammals (Dehnel's phenomenon). Alternatively, mass loss can result from food limitation or high predation risk. 2We use data from fertilizer, food-supplementation and predator-exclusion experiments in the Yukon during a population cycle from 1986 to 1996 to test the causes of overwinter mass loss by snowshoe hares (Lepus americanus). In all years, some hares on control sites gained mass overwinter. During the increase phase the majority gained mass, but in all other phases the majority lost mass. 3Snowshoe hares weighing < 1000 g in autumn always gained mass overwinter, as did the majority that weighed 1000,1400 g. Hares weighing > 1800 g in autumn usually lost mass. 4Snowshoe hares on the predator-exclosure + food site gained mass overwinter in all years. Hares on the food-supplementation sites lost mass during the decline but gained mass in all other phases. Fertilization had little effect on mass dynamics. 5Snowshoe hares were more likely to lose mass during winters with low survival rates. Snowshoe hares on the predator-exclosure treatments were more likely to gain mass than were hares on control sites. 6Overwinter mass loss was correlated with maximum snow depth. At equivalent snow depths, hares on food-supplemented areas lost 98 g (± 14·6 SE) less on average than hares on the controls and predator-exclosure treatment. 7Bone-marrow fat was related to body mass and cause of death. Small hares had the lowest marrow fat. Hares killed by humans had higher marrow fat than those killed by predators; hares that simply died had the lowest marrow fat. Hares on food-supplemented sites had the highest kidney and marrow fat. 8Overwinter-mass loss for snowshoe hares is explained interactively by winter conditions, food supply, predation risk and autumn mass. Some snowshoe hares lost mass overwinter in all years and on all treatments, suggesting that reducing body mass may facilitate survival, especially in cases where foraging costs are high energetically or increase predation risk. [source] Does Holling's disc equation explain the functional response of a kleptoparasite?JOURNAL OF ANIMAL ECOLOGY, Issue 4 2001R. W. G. Caldow Summary 1Type II functional responses, which can be described by Holling's disc equation, have been found in many studies of predator/prey and host/parasite interactions. However, an increasing number of studies have shown that the assumptions on which the disc equation is based do not necessarily hold. We examine the functional response of kleptoparasitically feeding Arctic skuas (Stercorarius parasiticus L.) to the abundance of fish-carrying auks and, by examination of the assumptions of the disc equation, test whether it can explain the function. 2The rate at which individual skuas make successful chases is a decelerating function of the abundance of auks. However, it would appear that this is not determined by factors that influence their probability of success, but by the rate at which they initiate chases. This too is a decelerating function of the abundance of auks. Arctic skuas have a Type II functional response. 3Although Arctic skuas exhibited a direct numerical response there was no evidence that components of predation connected to the density of predators (direct prey stealing, or increased host avoidance) had any effect on the rate at which individual skuas made chases or were successful in their chases. We conclude that the observed functional response is free from any effects of interference. 4We suggest that abnormally high levels of foraging effort expended by breeding skuas and their poor breeding success in the years of observation argue against the limit to the observed functional response being determined by skuas' energetic requirements. 5Several of the assumptions underlying the disc equation do not hold. The duration of chases (handling time) was not a constant; it decreased with increasing host abundance. Moreover, the chase duration predicted by the disc equation, if handling time limited the functional response, was far in excess of that observed. Furthermore, the observed rate of decline in the searching time per victim with increasing host abundance suggested that skuas' instantaneous rate of discovery was also not constant. Possible reasons for these observations are discussed. The basic disc equation may describe Arctic skuas' functional response, but it cannot explain it. [source] Mitochondria and calcium homeostasis: a tale of three luminescent proteinsLUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 2 2001Paulo J. Magalhães Abstract In recent years the jellyfish Aequorea victoria has provided the scientific community with a pair of tools of exceptional usefulness: aequorin and the green fluorescent protein (GFP). Whereas the former has played a major role in the study of calcium signalling, the latter has sparked the imagination of researchers into a myriad of elegant experiments. The firefly Photinus pyralis has also been of great use, providing a third luminescent protein, luciferase, which is mostly known for its role as a reporter protein. Concurrent use of these three proteins provides a powerful means of elucidating biological processes with fine spatio-temporal detail. Here we will illustrate how specific molecular engineering of these three proteins provided a set of biological tools capable of generating important data in the field of calcium homeostasis. First, we will show how the use of specifically targeted aequorin chimeras enabled the measurement of regional Ca2+ concentrations; second, how the use of GFP (and derived chromatic mutants) permitted detailed morphological analyses in living cells; third, how luciferase was used to analyse energetic requirements at the subcellular level. Together, these three experimental approaches have provided important details on how mitochondria participate actively in calcium homeostasis. A final note regarding clinical implications demonstrates the practical usefulness of the data obtained. Copyright © 2001 John Wiley & Sons, Ltd. [source] Variability in the nutritional value of the major copepods in Cape Cod Bay (Massachusetts, USA) with implications for right whalesMARINE ECOLOGY, Issue 2 2006Amy DeLorenzo Costa Abstract The North Atlantic right whale, a seriously endangered species, is found in Cape Cod Bay (Massachusetts, USA) during the winter and early spring. During their residency in these waters, these whales are frequently observed feeding. This study evaluated spatial and temporal changes in the chemical composition (carbon weight and C/N ratio) of the food resource targeted by the right whales in Cape Cod Bay. The three taxa measured (Centropages typicus, Pseudocalanus spp., and Calanus finmarchicus) had highly variable chemical compositions resulting from the different life strategies and from fluctuations in their surrounding environment. The impact of seasonal variability in the energy densities of the food resource of right whales was calculated and compared to the energetic requirements of these whales. Calculations indicated that differences in the nutritional content of the zooplankton prey in Cape Cod Bay could have a considerable effect on the nutrition available to the right whales. Therefore, it is likely that using more precise estimates of the energetic densities of the prey of right whales would lead to a re-evaluation of the adequacy of the food resource available to these whales in the North Atlantic. [source] Toward quantifying the usage costs of human immunity: Altered metabolic rates and hormone levels during acute immune activation in menAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 4 2010Michael P. Muehlenbein There is a paucity of data on the energetic demands of human immune functions, despite the fact that both clinical medicine and evolutionary biology would benefit from further clarification of these costs. To better understand the energetic requirements of mounting a mild immune response, as well as some of the major hormonal changes underlying these metabolic changes, we examined changes in resting metabolic rate (RMR) and hormones during and after respiratory tract infection in young adult men. An epidemiologic passive detection design was used to recruit 25 nonfebrile subjects naturally infected with respiratory tract pathogens. Symptomology, percent body fat, RMR, salivary testosterone and cortisol, and other information were collected at a minimum of three time points during and after convalescence. Comparisons of the differences in RMR, testosterone, and cortisol between sampling days within individual cases were made using paired t -tests. Participants experienced 8% higher RMR during illness, and a subset of these men experienced a mean increase greater than 14%. The participants also experienced 10% lower testosterone levels during illness, and a subset of these participants experienced a mean decrease of 30%, although cortisol levels did not change significantly. These results document elevated RMR following natural pathogen exposure in adult humans, demonstrating that even mild immune reactions can elicit significant increases in energy expenditure. Understanding the costs of immunity and the immunomodulatory actions of hormones are central to understanding the role of immunity in human life history evolution. Am. J. Hum. Biol. 2010. © 2010 Wiley-Liss, Inc. [source] Energetic consequences of being a Homo erectus femaleAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 5 2002Leslie C. Aiello Body size is one of the most important characteristics of any animal because it affects a range of behavioral, ecological, and physiological traits including energy requirements, choice of food, reproductive strategies, predation risk, range size, and locomotor style. This article focuses on the implications of being large bodied for Homo erectus females, estimated to have been over 50% heavier than average australopithecine females. The energy requirements of these hominins are modeled using data on activity patterns, body mass, and life history from living primates. Particular attention is given to the inferred energetic costs of reproduction for Homo erectus females based on chimpanzee and human reproductive scheduling. Daily energy requirements during gestation and lactation would have been significantly higher for Homo erectus females, as would total energetic cost per offspring if the australopithecines and Homo erectus had similar reproductive schedules (gestation and lactation lengths and interbirth intervals). Shortening the interbirth interval could considerably reduce the costs per offspring to Homo erectus and have the added advantage of increasing reproductive output. The mother would, however, incur additional daily costs of caring for the dependent offspring. If Homo erectus females adopted this reproductive strategy, it would necessarily imply a revolution in the way in which females obtained and utilized energy to support their increased energetic requirements. This transformation is likely to have occurred on several levels involving cooperative economic division of labor, locomotor energetics, menopause, organ size, and other physiological mechanisms for reducing the energetic load on females. Am. J. Hum. Biol. 14:551,565, 2002. © 2002 Wiley-Liss, Inc. [source] Effect of food shortage and temperature on oxygen consumption in the lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae)PHYSIOLOGICAL ENTOMOLOGY, Issue 4 2003D. Renault Abstract., Temperature and food availability are limiting factors for the establishment of tropical insects in temperate countries. In the alien pest beetle, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), starvation and temperature have a significant impact on metabolic rate with oxygen consumption ranging from 0.5 µmol/g fresh mass (FM)/h at 12 °C to 3.4 µmol/g FM/h at 24 °C. At 12 °C, oxygen consumption decreased continuously during an entire period of starvation. However, at 16, 20 and 24 °C, beetles display a marked hyperactivity that leads to an increase in the oxygen consumption level during the first week of starvation, followed by a steep decrease until the end of the starvation period. Oxygen consumption either does not decline in fed beetles (observed at higher temperatures) or declines at a much shallower rate than in starved beetles (observed at cooler temperatures). During the first week of refeeding, Oxygen consumption rose steeply at 16, 20 and 24 °C before levelling off to the initial value (t0). At 12 °C, no compensation process was observed during recovery. This study reveals that an important threshold in the biology of A. diaperinus lies between 12 and 16 °C, leading to the onset of reduced locomotor activity and the promotion of survival to the detriment of reproduction. This ,sit and wait' behaviour is proposed as an adaptive strategy (i.e. inactivity and lower oxygen consumption coupled with low energetic requirements and high recovery abilities). Such behaviour and the observed hyperactivity were rarely described in insects before the present study. Together, the previous and present results suggest that A. diaperinus populations are likely maintained in temperate regions by immigration from warmer situations. [source] Home range dynamics of the yellow-footed rock-wallaby (Petrogale xanthopus celeris) in central-western QueenslandAUSTRAL ECOLOGY, Issue 1 2009ANDY SHARP Abstract Analyses of the interspecific differences in macropod home range size suggest that habitat productivity exerts a greater influence on range size than does body mass. This relationship is also apparent within the rock-wallaby genus. Lim reported that yellow-footed rock-wallabies (Petrogale xanthopus xanthopus) inhabiting the semi-arid Flinders Ranges (South Australia) had a mean home range of 170 ha. While consistent with the hypothesis that species inhabiting less productive habitats will require larger ranges to fulfil their energetic requirements, the ranges reported by Lim were considerably larger than those observed for heavier sympatric macropods. The aim of the current study was to document the home range dynamics of P. x. celeris in central-western Queensland and undertake a comparison with those reported for their southern counterparts. Wallaby movements were monitored at Idalia National Park, between winter 1992 and winter 1994. Male foraging ranges (95% fixed kernel; 15.4 ha, SD = ±7.8 ha) were found to be significantly larger than those of female wallabies (11.3 ha, SD = ±4.9 ha). Because of varying distances to the wallabies' favoured foraging ground (i.e. an adjacent herb field), the direction in which the wallabies moved to forage also significantly affected range size. Mean home range size was estimated to be 23.5 ha (SD = ±15.2 ha; 95% fixed kernel) and 67.5 ha (SD = ±22.4 ha; 100% minimum convex polygon). The discrepancy between these two estimates resulted from the exclusion of locations, from the 95% kernel estimates, when the wallabies moved to a water source 1.5 km distant from the colony site. The observed foraging and home ranges approximated those that could be expected for a macropod inhabiting the semi-arid zone (i.e. 2.4 times larger-than-predicted from body mass alone). Possible reasons for the disparity between the current study and that of Lim are examined. [source] Physiological Ecology of Aquatic Overwintering in Ranid FrogsBIOLOGICAL REVIEWS, Issue 2 2008Glenn J. Tattersall Abstract In cold-temperate climates, overwintering aquatic ranid frogs must survive prolonged periods of low temperature, often accompanied by low levels of dissolved oxygen. They must do so with the energy stores acquired prior to the onset of winter. Overwintering mortality is a significant factor in their life history, occasionally reaching 100% due to freezing and/or anoxia. Many species of northern ranid frogs overwinter in the tadpole stage, which increases survival during hypoxic episodes relative to adults, as well as allowing for larger sizes at metamorphosis. At temperatures below 5 °C, submerged ranid frogs are capable of acquiring adequate oxygen via cutaneous gas exchange over a wide range of ambient oxygen partial pressures (PO2), and possess numerous physiological and behavioural mechanisms that allow them to maintain normal rates of oxygen uptake across the skin at a relatively low PO2. At levels of oxygen near and below the critical PO2 that allows for aerobic metabolism, frogs must adopt biochemical mechanisms that act to minimise oxygen utilisation and assist in maintaining an aerobic state to survive overwintering. These mechanisms include alterations in mitochondrial metabolism and affinity, changes in membrane permeability, alterations in water balance, and reduction in cellular electrochemical gradients, all of which lead to an overall reduction in whole-animal metabolism. Winter energetic requirements are fueled by the energy stores in liver, muscle, and fat depots, which are likely to be sufficient when the water is cold and well oxygenated. However, under hypoxic conditions fat stores cannot be utilised efficiently and glycogen stores are used up rapidly due to recruitment of anaerobiosis. Since ranid frogs have minimal tolerance to anoxia, it is untenable to suggest that they spend a significant portion of the winter buried in anoxic mud, but instead utilise a suite of behavioural and physiological mechanisms geared to optimal survival in cold, hypoxic conditions. [source] |