Emerging Model Organism (emerging + model_organism)

Distribution by Scientific Domains


Selected Abstracts


Mutation in the abcb7 gene causes abnormal iron and fatty acid metabolism in developing medaka fish

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 9 2008
Akimitsu Miyake
The medaka fish (Oryzias latipes) is an emerging model organism for which a variety of unique developmental mutants have now been generated. Our recent mutagenesis screening of the medaka isolated a unique mutant that develops a fatty liver at larval stages. Positional cloning identified the responsible gene as medaka abcb7. Abcb7, a mitochondrial ABC (ATP binding cassette) half-transporter, has been implicated in iron metabolism. Recently, human Abcb7 was found to be mutated in X-linked sideroblastic anemia with cerebellar ataxia (XLSA/A). The homozygous medaka mutant exhibits abnormal iron metabolism in erythrocytes and accumulation of lipid in the liver. Microarray and in situ hybridization analyses demonstrated that the expression of genes involved in iron and lipid metabolisms are both affected in the mutant liver, suggesting novel roles of Abcb7 in the development of physiologically functional liver. The medaka abcb7 mutant thus could provide insights into the pathogenesis of XLSA/A as well as the normal function of the gene. [source]


Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signalling in the pea aphid

INSECT MOLECULAR BIOLOGY, Issue 2010
O. Christiaens
Abstract The pea aphid (Acyrthosiphon pisum) is the first whole genome sequenced insect with a hemimetabolic development and an emerging model organism for studies in ecology, evolution and development. The insect steroid moulting hormone 20-hydroxyecdysone (20E) controls and coordinates development in insects, especially the moulting/metamorphosis process. We, therefore present here a comprehensive characterization of the Halloween genes phantom, disembodied, shadow, shade, spook and spookiest, coding for the P450 enzymes that control the biosynthesis of 20E. Regarding the presence of nuclear receptors in the pea aphid genome, we found 19 genes, representing all of the seven known subfamilies. The annotation and phylogenetic analysis revealed a strong conservation in the class of Insecta. But compared with other sequenced insect genomes, three orthologues are missing in the Acyrthosiphon genome, namely HR96, PNR-like and Knirps. We also cloned the EcR, Usp, E75 and HR3. Finally, 3D-modelling of the ligand-binding domain of Ap-EcR exhibited the typical canonical structural scaffold with 12 ,-helices associated with a short hairpin of two antiparallel ,-strands. Upon docking, 20E was located in the hormone-binding groove, supporting the hypothesis that EcR has a role in 20E signalling. [source]


Pigment pattern formation in zebrafish: A model for developmental genetics and the evolution of form

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 6 2002
Ian K. Quigley
The zebrafish Danio rerio is an emerging model organism for understanding vertebrate development and genetics. One trait of both historical and recent interest is the pattern formed by neural crest,derived pigment cells, or chromatophores, which include black melanophores, yellow xanthophores, and iridescent iridophores. In zebrafish, an embryonic and early larval pigment pattern consists of several stripes of melanophores and iridophores, whereas xanthophores are scattered widely over the flank. During metamorphosis, however, this pattern is transformed into that of the adult, which comprises several dark stripes of melanophores and iridophores that alternate with light stripes of xanthophores and iridophores. In this review, we place zebrafish relative to other model and non-model species; we review what is known about the processes of chromatophore specification, differentiation, and morphogenesis during the development of embryonic and adult pigment patterns, and we address how future studies of zebrafish will likely aid our understanding of human disease and the evolution of form. Microsc. Res. Tech. 58:442,455, 2002. © 2002 Wiley-Liss, Inc. [source]


The Corynebacterium glutamicum aconitase repressor: scratching around for crystals

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2010
Javier García-Nafría
Imperfections on the surfaces of crystallization containers are known to influence crystal formation and are thought to do so by helping to overcome the nucleation barrier. The intentional creation of imperfections has been widely applied to induce crystallization of small molecules, but has not been reported for protein crystallization. Here, the crystallization and preliminary X-ray analysis of the TetR-type aconitase repressor are reported. This regulator was the first transcription factor to be identified in the regulation of the tricarboxylic acid cycle in Corynebacterium glutamicum, an organism that is of special industrial interest and is an emerging model organism for Corynebacterineae. Successful crystallization involved introducing manual scratches on the surface of standard commercial plates, which led to a substantial improvement in crystal nucleation and quality. [source]