Home About us Contact | |||
Emerging Modality (emerging + modality)
Selected AbstractsMolecular basis of therapeutic approaches to gastric cancerJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 1 2009Kaichun Wu Abstract Gastric cancer is the top lethal cancer in Asia. As the majority of cases present with advanced disease, conventional therapies (surgery, chemotherapy, and radiotherapy) have limited efficacy to reduce mortality. Emerging modalities provide promise to combat this malignancy. Target-protein-based cancer therapy has become available in clinical practice. Numerous molecules have been shown potential to target specific pathways for tumor cell growth. Cyclooxygenase-2 (COX-2) is overexpressed in and correlated with gastric cancer, and knockdown of COX-2 or administration of COX-2 inhibitors suppresses tumor formation in models of gastric cancer. Induction of apoptosis, reduction of angiogenesis, and blocking of potassium ion channels may present new mechanisms of COX-2 inhibition. Runt-related transcription factor 3 (RUNX3) is a candidate tumor suppressor gene whose deficiency is causally related to gastric cancer. RUNX3 is downregulated in metastatic gastric cancer. RUNX3 activation inhibits angiogenesis in xenograft tumors in nude mice. Tumor microenvironment modulation also provides a powerful tool to inhibit cancer development and progress; details of the potential roles of angiopoietins are discussed in this review. Osteopontin is a secreted protein involved in stress response, inflammation, wound healing, and immune response. Inhibition of osteopontin by RNA interfering technique suppressed tumorigenesis as well as angiogenesis in gastric cancer. Immunotherapy remains another important choice of adjuvant therapy for cancer. A tumor-specific antigen MG7-Ag has been identified with great potential for inducing immune response in gastric cancer. Using HLA-A-matched allogeneic gastric cancer cells to induce tumor-specific cytotoxic T lymphocytes appeared to be an alternative option of immunotherapy for gastric cancer. [source] Ionizing radiation as a response-enhancing agent for CD95-mediated apoptosisINTERNATIONAL JOURNAL OF CANCER, Issue 4 2001Michael A. Sheard Ph.D. Abstract CD95 (Fas/APO-1) is a death receptor on the surface of a wide variety of cell types. In most cells examined, ionizing radiation acts as a response-enhancing agent for CD95-mediated cell death. Although DNA-damaging radiation appears to modulate CD95-mediated signals through multiple mechanisms, the only well-characterized mechanism is activation of the tumor-suppressor protein p53, which transcriptionally regulates the expression of CD95 on various cell types. The ligand for CD95 is expressed by activated lymphocytes and natural-killer cells, which produce factors that sensitize cells resistant to CD95-mediated cell death. Ligation of CD95 on irradiated tumor cells might be achievable using emerging modalities that reactivate the stalled anti-tumor immune response. © 2001 Wiley-Liss, Inc. [source] In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignanciesINTERNATIONAL JOURNAL OF CANCER, Issue 3 2007Edward B. Garon Abstract When delivered to cells, very short duration, high electric field pulses (nanoelectropulses) induce primarily intracellular events. We present evidence that this emerging modality may have a role as a local cancer therapy. Five hematologic and 16 solid tumor cell lines were pulsed in vitro. Hematologic cells proved particularly sensitive to nanoelectropulses, with more than a 60% decrease in viable cells measured by MTT assay 96 hr after pulsing in 4 of 5 cell lines. In solid tumor cell lines, 10 out of 16 cell lines had more than a 10% decrease in viable cells. AsPC-1, a pancreatic cancer cell line, demonstrated the greatest in vitro sensitivity among solid tumor cell lines, with a 64% decrease in viable cells. When nanoelectropulse therapy was applied to AsPC-1 tumors in athymic nude mice, responses were seen in 4 of 6 tumors, including clinical complete responses in 3 of 6 animals. A single human subject applied nanoelectropulse therapy to his own basal cell carcinoma and had a complete pathologic response. In summary, we demonstrate that electric pulses 20 ns or less kill a wide variety of human cancer cells in vitro, induce tumor regression in vivo, and show efficacy in a single human patient. Therefore, nanoelectropulse therapy deserves further study as a potentially effective cancer therapy. © 2007 Wiley-Liss, Inc. [source] Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancerLASERS IN SURGERY AND MEDICINE, Issue 5 2006K.L. Du MD Abstract Background and Objectives Interstitial photodynamic therapy (PDT) is an emerging modality for the treatment of solid organ disease. Our group at the University of Pennsylvania has performed extensive studies that demonstrate the feasibility of interstitial PDT for prostate cancer. Our preclinical and clinical experience is herein detailed. Study Design/Materials and Methods We have treated 16 canines in preclinical studies, and 16 human subjects in a Phase I study, using motexafin lutetium-mediated PDT for recurrent prostate adenocarcinoma. Dosimetry of light fluence, drug level and oxygen distribution for these patients were performed. Results We demonstrate the safe and comprehensive treatment of the prostate using PDT. However, there is significant variability in the dose distribution and the subsequent tissue necrosis throughout the prostate. Conclusions PDT is an attractive option for the treatment of prostate adenocarcinoma. However, the observed variation in PDT dose distribution translates into uncertain therapeutic reproducibility. Our future focus will be on the development of an integrated system that is able to both detect and compensate for dose variations in real-time, in order to deliver a consistent overall PDT dose distribution. Lasers Surg. Med. 38:427,434, 2006. © 2006 Wiley-Liss, Inc. [source] |