Electrostatic Effects (electrostatic + effects)

Distribution by Scientific Domains


Selected Abstracts


ELECTROSTATIC EFFECTS ON PHYSICAL PROPERTIES OF PARTICULATE WHEY PROTEIN ISOLATE GELS

JOURNAL OF TEXTURE STUDIES, Issue 4 2001
MATTHEW K. McGUFFEY
Physical properties of particulate whey protein isolate gels formed under varying electrostatic conditions were investigated using large strain rheological and microstructural techniques. The two treatment ranges evaluated were adjusting pH (5.2-5.8) with no added NaCl and adjusting the NaCl (0.2-0.6 M) at pH 7. Gels (10% protein w/v) were formed by heating at 80C for 30 min. The large strain properties of fracture strain (,f), fracture stress (,f), and a measure of strain hardening (R0.3) were determined using a torsion method. Gel microstructure was evaluated using scanning electron microscopy (SEM) and gel permeability (Bgel). Overlaying ,f and ,f curves for pH and NaCl treatments demonstrated an overlap where gels of equal ,f and ,f could be formed by adjusting pH or NaCl concentration. The high fracture stress (,f, 23 kPa and ,f, 1.86) pair conditions were pH 5.47 and 0.25 M NaCl, pH 7.0. The low fracture stress (,f, 13 kPa and ,f, 1.90) pair conditions were pH 5.68 and 0.6 M NaCl, pH 7.0. The 0.25 M NaCl, pH 7 treatment demonstrated higher R0.3 values than the pH 5.47 treatment. When the sulfhydryl blocker n-ethylmaleimide was added at 2 mM to the 0.25 M NaCl, pH 7 gel treatment, its rheological behavior was NSD (p>0.05) to the pH 5.47 gel treatment, indicating disulfide bond formation regulated strain hardening. Altering surface charge or counterions, and disulfide bonding, was required to produce gels with similar large strain rheological properties. An increase in gel permeability coincided with an increase in pore size as observed by SEM, independent of rheological properties. This demonstrated that at the length scales investigated, microstructure was not linked to changes in large strain rheological properties. [source]


Ligand Reprogramming in Dinuclear Helicate Complexes: A Consequence of Allosteric or Electrostatic Effects?

CHEMISTRY - A EUROPEAN JOURNAL, Issue 18 2007

Abstract The ditopic ligand 6,6,-bis(4-methylthiazol-2-yl)-3,3,-([18]crown-6)-2,2,-bipyridine (L1) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N - donor chain and an additional "external" crown ether binding site which spans the central 2,2,-bipyridine unit. In polar solvents (MeCN, MeNO2) this ligand forms complexes with ZnII, CdII, HgII and CuI ions via coordination of the N donors to the metal ion. Reaction with both HgII and CuI ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central pypy bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With ZnII ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with CdII ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O - donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the HgII - or CdII -containing helicate with either Ba2+ or Sr2+ ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM,(L1)]4+ (M=HgII, CdII; M,=Ba2+, Sr2+), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the ZnII species, which already exists as a single-stranded mononuclear complex. Similar reactions with the CdII system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba2+ shows that the dinuclear structure still remains intact but the pitch length is significantly increased. [source]


Fluorescence Regeneration as a Signaling Principle for Choline and Carnitine Binding: A Refined Supramolecular Sensor System Based on a Fluorescent Azoalkane,

ADVANCED FUNCTIONAL MATERIALS, Issue 2 2006
H. Bakirci
Abstract The fluorescent azoalkane, 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO), forms inclusion complexes with p -sulfonatocalix[4]arene (CX4). The binding constants are on the order of 103,M,1 in water. The addition of CX4 to DBO solutions results in an efficient fluorescence quenching (up to 90,%). This supramolecular system can be used as a truly water-soluble sensor system to signal the binding of organic ammonium ions over a large pH range. Addition of choline and carnitine derivatives and tetraalkylammonium ions results in regeneration of this fluorescence, from which the binding constants (KC,=,103,105,M,1) are calculated by means of a competitive complexation model. Electrostatic effects are observed, namely, a more-than-one order of magnitude weaker binding of the carnitines in neutral solution. [source]


Electrostatic effects on inertial particle transport in bifurcated tubes

AICHE JOURNAL, Issue 6 2009
Fong Yew Leong
Abstract Most aerosols found naturally in the ambient environment or those dispersed from artificial devices such as dry powder inhalers, are electrically charged. It is known that a strong electrostatic charge on aerosols can result in transport behavior dramatically different from that of uncharged aerosols, even in the absence of an external electric field. In the present work, we study pneumatic transport of corona-charged particles in bifurcated tubes. This is accomplished by tracking the motion of discrete particles numerically under the influence of drag, gravitational, and electrostatic forces. The model aerosol is fly ash powder, whose size and charge distributions have been determined experimentally. The electrical mobility of the charged particle cloud is modeled through coulombic interactions between discrete point charges. For the case of polydispersed particles electrically charged across a distribution, the deposition efficiency was found to be greater than what is indicated by the mean charge and size. In particular, use of negatively charged fly ash powder of mean size of 2 ,m and mean charge of ,1.5 C/kg led to significant increase in deposition efficiency (,29%) compared with uncharged fly ash powder of the same size distribution (,8%). Analysis of particle residence times suggests significant interaction between electrical and drag forces. These findings could have implications for pneumatic powder conveying or pulmonary drug delivery applications. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


A generalized exo -anomeric effect.

ISRAEL JOURNAL OF CHEMISTRY, Issue 3-4 2000
Substituent, solvent effects on the conformational equilibria of 2-(arylseleno)cyclohexanones
The effects of substitution and solvent on the conformational equilibria of 2-[(4-R-substituted-phenyl)seleno]cyclohexanones are described. The conformational equilibria were determined by comparison of the linewidths of the H-2 resonances in the 1H NMR spectra of the conformationally averaged systems with those of the anancomeric (highly biased) 4-isopropyl-2-substituted cyclohexanones. The substituent (R = NMe2, OMe, Me, H, F, Cl, CF3, NO2) and solvent ((CD3)2CO, CD3CN, CD2Cl2, CDCl3) effects are discussed in terms of electrostatic effects and the possible stabilizing orbital interactions. The values of Keq (axial-equatorial) increase as the substituent becomes more electron withdrawing, in agreement with the dominance of nSe , ,*C=O or ,C-Se , ,*C=O orbital interactions in the axial conformers. The increase in the proportion of the equatorial isomers in more polar solvents for a given substituent suggests a damping of the dipolar interactions in the equatorial isomers. However, the proportion of the equatorial isomers in a given solvent increases as the substituent becomes more electron withdrawing, indicating that electrostatic interactions do not dominate in controlling the conformational equilibria. Analysis of the equilibrium data by means of a dual substituent parameter approach indicates the best correlation with ,I and ,+R substituent constants in CD2Cl2 and with ,I and ,°R substituent constants in CD3CN, with similar sensitivities to the resonance and polar effects. The correlations are interpreted in terms of accommodation of effective positive charge on the selenium atom in the axial isomers in CD2Cl2, and a lesser sensitivity to the buildup of positive charge in the more polar solvent CD3CN. Comparison of the IR ,CO -stretching frequencies for the axial and equatorial ArSe-substituted anancomeric systems (R = NO2, NMe2) indicates a higher stretching frequency for the NO2 -substituted isomers. In the case of the NMe2 -substituted compounds, ,CO appears at a higher frequency in the equatorial isomer, whereas in the case of the NO2 -substituted compounds, ,CO is less sensitive to the axial or equatorial orientation of the substituent. The results are consistent with the operation of nse , ,*c=0 or ,C-Se , ,*C=O orbital interactions in the axial isomers. The JC2-H2 values in the axially-substituted anancomeric isomers are of greater magnitude than those in the equatorially-substituted isomers, which is also consistent with the operation of the orbital interactions described above. There is, however, no marked substituent effect on the JC2,H2 values within the series of axial or equatorial isomers. We argue that this does not support the dominance of ,C-Se , ,*C=O orbital interactions. Examination of crystal structures reported in the literature for related compounds indicates a particular gauche orientation about the C2,Se bond, which lends further support to the operation of an nSe , ,*C=O orbital interaction. We suggest that the latter interaction is a manifestation of a generalized exo -anomeric effect. [source]


Substituent effects on conformational preference in , -substituted , -fluorophenylacetic acid methyl ester model systems for chiral derivatizing agents

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 10 2009
Riadh Sahnoun
Abstract In connection with study of chiral derivatizing agents (CDAs) for NMR determination of absolute configuration of organic compounds, factors controlling the conformational preference between syn - and anti -forms in , -substituted , -fluorophenylacetic acid methyl ester (FC(X)(Ph)COOMe) model systems were theoretically investigated. Substituents X at the stereogenic carbon atom were X,=,H, CCH and CH3, the electronic and steric properties of which were significantly different from each other. The model system with X,=,CCH and that with X,=,CH3 were found to be possible candidates for fluorine-containing CDAs. The syn conformation is stable compared with the anti one by 0.7,kcal,mol,1 for the ester with X,=,CCH. On the other hand, the anti conformation is stable compared with the syn one by 0.5,kcal,mol,1 for the ester with X,=,CH3. Both natural bond orbital (NBO) analysis and deletion of selected orbitals based on the donor,acceptor NBO scheme were adopted for semi-quantitative estimation of factors responsible for the conformational preference as well as a qualitative inspection of occupied canonical molecular orbitals (MOs). It was shown that [,,(,*,+,,*)(CO)] and [,,,*(Ph) and ,(Ph),,*] hyperconjugations are the main factors controlling the conformational preferences between the syn and anti conformations. Other types of effects such as electrostatic effects were also investigated. The role of the fluorine atom was also clarified. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Six novel mutations including triple heterozygosity for Phe31Ser, 514delT and 516T,G factor X gene mutations are responsible for congenital factor X deficiency in patients of Nepali and Indian origin

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 7 2005
G. JAYANDHARAN
Summary., Factor X (FX) deficiency is a rare (1 : 100000) autosomal recessive disorder caused by heterogeneous mutations in FX gene. We have studied the molecular basis this disease in six Indian and one Nepali patients. Diagnosis was confirmed by measuring the FX coagulant activity (FX: C) using a PT based assay. Six of them had a FX: C of < 1% and one patient had 24% coagulant activity. Mutations were identified in all the seven patients. These included eight (88.8%) missense and one frame-shift (11.2%) mutations of which six were novel. Three of the novel mutations, a Phe31Ser affecting ,Gla' domain and 514delT and 516T,G mutations affecting Cys132 in ,connecting region' were identified in a triple compound heterozygous state in a Nepali patient presenting with a severe phenotype. Two other novel mutations, Gly133Arg, may affect the disulphide bridge between Cys132-Cys302 in the connecting region while Gly223Arg may perturb the catalytic triad (His236, Asp282 and Ser379). The other novel mutation, Ser354Arg, involves the replacement of a small-buried residue by a large basic aminoacid and is likely to have steric or electrostatic effects in the pocket involving Lys351-Arg347-Lys414 that contributes to the core epitope of FXa for binding to FVa. Three previously reported mutations, Thr318Met; Gly323Ser; Gly366Ser were also identified. This is the first report of the molecular basis of FX deficiency in patients from the Indian subcontinent. [source]


New insight on ,-lactoglobulin binding sites by 1-anilinonaphthalene-8-sulfonate fluorescence decay

PROTEIN SCIENCE, Issue 10 2000
Maddalena Collini
Abstract The fluorescence time decay parameters of the ,-lactoglobulin-1-anilinonaphthalene-8-sulfonate complex have been investigated under physical and chemical perturbations (2 < pH < 8 and added electrolyte 0 < NaCl < 0.5 M) to obtain new insight on the nature of the protein binding interactions. A double exponential decay of the bound probe lifetime has been confirmed by the presence of a longer component, 11 to 14.5 ns, and a shorter component, 2.5 to 3.5 ns. The two lifetimes are ascribed to different binding modes associated also with different exposure to the solvent; in particular, the longer component is attributed to binding inside the hydrophobic beta barrel, while a "surface" site is suggested for the shorter component. A detailed analysis of the lifetime fractional intensities correlates the binding constants with ionic strength and supports the presence of electrostatic effects at both sites. A Debye,Hückel approach, applied to extrapolate the electrostatic free energy contribution vs. pH at vanishing ionic strength, gives interesting clues on the effective charge felt by the ANS ligands in the proximity of each site. In particular, binding is found to parallel the aspartate and glutamate titrations between pH 3 and pH 4.5; the "surface" site mainly responds to the presence of these local titrating charges while the "internal" site more closely follows the overall protein net charge. [source]


Ortho-aminobenzoic acid-labeled bradykinins in interaction with lipid vesicles: Fluorescence study

BIOPOLYMERS, Issue 5 2002
R. F. Turchiello
Abstract The peptide hormone bradykinin (BK) (Arg1 -Pro2 -Pro3 -Gly4 -Phe5 -Ser6 -Pro7 -Phe8 -Arg9) and its shorter homolog BK1,5 (Arg1 -Pro2 -Pro3 -Gly4 -Phe5) were labeled with the extrinsic fluorescent probe ortho -aminobenzoic acid (Abz) bound to the N-terminal and amidated in the C-terminal carboxyl group (Abz-BK-NH2 and Abz-BK1,5 -NH2). The fragment des-Arg9 -BK was synthesized with the Abz fluorescent probe attached to the 3-amino group of 2,3-amino propionic acid (DAP), which positioned the Abz group at the C-terminal side of BK sequence, constituting the peptide des-Arg9 -BK-DAP(Abz)-NH2. The spectral characteristics of the probe were similar in the three peptides, and their fluorescent properties were monitored to study the interaction of the peptides with anionic vesicles of dimyristoylphosphatidylglycerol (DMPG). Time-resolved fluorescence experiments showed that the fluorescence decay of the peptides was best described by double-exponential kinetics, with mean lifetimes values around 8.0 ns in buffer pH 7.4 that increased about 10% in the presence of DMPG vesicles. About a 10-fold increase, compared with the values in aqueous solution, was observed in the steady-state anisotropy in the presence of vesicles. A similar increase was also observed for the rotational correlation times obtained from time-resolved anisotropy decay profiles, and related to the overall tumbling of the peptides. Equilibrium binding constants for the peptide,lipid interaction were examined monitoring anisotropy values in titration experiments and the electrostatic effects were evaluated through Gouy,Chapman potential calculations. Without corrections for electrostatic effects, the labeled fragment Abz-BK1,5 -NH2 presented the major affinity for DMPG vesicles. Corrections for the changes in peptide concentration due to electrostatic interactions suggested higher affinity of the BK fragments to the hydrophobic phase of the bilayer. © 2002 Wiley Periodicals, Inc. Biopolymers 65: 336,346, 2002 [source]


On the Generation of Catalytic Antibodies by Transition State Analogues

CHEMBIOCHEM, Issue 4 2003
Montserrat Barbany
Abstract The effective design of catalytic antibodies represents a major conceptual and practical challenge. It is implicitly assumed that a proper transition state analogue (TSA) can elicit a catalytic antibody (CA) that will catalyze the given reaction in a similar way to an enzyme that would evolve (or was evolved) to catalyze this reaction. However, in most cases it was found that the TSA used produced CAs with relatively low rate enhancement as compared to the corresponding enzymes, when these exist. The present work explores the origin of this problem, by developing two approaches that examine the similarity of the TSA and the corresponding transition state (TS). These analyses are used to assess the proficiency of the CA generated by the given TSA. Both approaches focus on electrostatic effects that have been found to play a major role in enzymatic reactions. The first method uses molecular interaction potentials to look for the similarity between the TSA and the TS and, in principle, to help in designing new haptens by using 3D quantitative struture,activity relationships. The second and more quantitative approach generates a grid of Langevin dipoles, which are polarized by the TSA, and then uses the grid to bind the TS. Comparison of the resulting binding energy with the binding energy of the TS to the grid that was polarized by the TS provides an estimate of the proficiency of the given CA. Our methods are used in examining the origin of the difference between the catalytic power of the 1F7 CA and chorismate mutase. It is demonstrated that the relatively small changes in charge and structure between the TS and TSA are sufficient to account for the difference in proficiency between the CA and the enzyme. Apparently the environment that was preorganized to stabilize the TSA charge distribution does not provide a sufficient stabilization to the TS. The general implications of our findings and the difficulties in designing a perfect TSA are discussed. Finally, the possible use of our approach in screening for an optimal TSA is pointed out. [source]