Home About us Contact | |||
Electrostatic Adsorption (electrostatic + adsorption)
Selected AbstractsBiosensor Based on Self-Assembling Glucose Oxidase and Dendrimer-Encapsulated Pt Nanoparticles on Carbon Nanotubes for Glucose DetectionELECTROANALYSIS, Issue 6 2007Lihuan Xu Abstract A novel amperometric glucose biosensor based on layer-by-layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer-encapsulated Pt nanoparticles (Pt-DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt-DENs layer and an anionic GOx layer. Transmission electron microscopy images and ,-potentials proved the formation of layer-by-layer nanostructures on carboxyl-functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt-DENs toward H2O2 and special three-dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5,,M, a wide linear range of 5,,M,0.65,mM, a short response time (within 5,s), and high sensitivity (30.64,,A mM,1,cm,2) and stability (80% remains after 30 days). [source] Capillary electrophoresis using copolymers of different composition as physical coatings: A comparative studyELECTROPHORESIS, Issue 5-6 2006Guillaume L. Erny Abstract In this work, a comparative study on the use of different polymers as physically adsorbed coatings for CE is presented. It is demonstrated that the use of ad hoc synthesized polymers as coatings allows tailoring the EOF in CE increasing the flexibility of this analytical technique. Namely, different polymers were synthesized at our laboratory using different percentages of ethylpyrrolidine methacrylate (EpyM) and N,N -dimethylacrylamide (DMA). Thus, by modifying the percentage of EpyM and DMA monomers it is possible to manipulate the positive charge of the copolymer, varying the global electrical charge on the capillary wall and with that the EOF. These coated capillaries are obtained by simply flushing a given EpyM,DMA aqueous solution into bare silica capillaries. It is shown that by using these coated capillaries at adequate pHs, faster or more resolved CE separations can be achieved depending on the requirements of each analysis. Moreover, it is demonstrated that these coated capillaries reduce the electrostatic adsorption of basic proteins onto the capillary wall. Furthermore, EpyM,DMA coatings allow the reproducible chiral separation of enantiomers through the partial filling technique (PFT). The EpyM,DMA coated capillaries are demonstrated to provide reproducible EOF values independently of the pH and polymer composition with%RSD values lower than 2% for the same day. It is also demonstrated that the coating procedure is reproducible between capillaries. The compatibility of this coating protocol with CE in microchips is discussed. [source] Ionic-Liquid-Doped Polyaniline Inverse Opals: Preparation, Characterization, and Application for the Electrochemical Impedance Immunoassay of Hepatitis B Surface AntigenADVANCED FUNCTIONAL MATERIALS, Issue 19 2009Xing-Hua Li Abstract A 3D ordered macroporous (3DOM) ionic-liquid-doped polyaniline (IL-PANI) inverse opaline film is fabricated with an electropolymerization method and gold nanoparticles (AuNPs) are assembled on the film by electrostatic adsorption, which offers a promising basis for biomolecular immobilization due to its satisfactory chemical stability, good electronic conductivity, and excellent biocompatibility. The AuNP/IL-PANI inverse opaline film could be used to fabricate an electrochemical impedance spectroscopy (EIS) immunosensor for the determination of Hepatitis B surface antigen (HBsAg). The concentration of HBsAg is measured using the EIS technique by monitoring the corresponding specific binding between HBsAg and HBsAb (surface antibody). The increased electron transfer resistance (Ret) values are proportional to the logarithmic value of the concentration of HBsAg. This novel immunoassay displays a linear response range between 0.032,pg mL,1 and 31.6,pg mL,1 with a detection limit of 0.001,pg mL,1. The detection of HBsAg levels in several sera showed satisfactory agreement with those using a commercial turbidimetric method. [source] Polyoxometalate/polymer hybrid materials: fabrication and propertiesPOLYMER INTERNATIONAL, Issue 11 2009Wei Qi Abstract In this article we provide an overview of the fabrication and properties of polyoxometalate/polymer hybrid materials. Physical blending, electrostatic adsorption, covalent bonding and supramolecular modification are the main strategies to incorporate polyoxometalates into organic or inorganic (taking silica as an example) polymer matrices. The polyoxometalate/polymer hybrid materials obtained concurrently possess the unique optical, electrical or catalytic properties of polyoxometalates and the favorable processability and stability of polymer matrices. Polyoxometalate/polymer hybrid materials may have potential applications in optics, electronics, biology, medicine and catalysis. Copyright © 2009 Society of Chemical Industry [source] Polyethylenimine-coated albumin nanoparticles for BMP-2 deliveryBIOTECHNOLOGY PROGRESS, Issue 4 2008Sufeng Zhang Abstract Nanoparticle (NP)-based delivery has gained importance for improving the potency of therapeutic agents. The bovine serum albumin (BSA) NPs, obtained by a coacervation process, was modified by electrostatic adsorption of cationic polyethylenimine (PEI) to NP surfaces for delivery of bone-inducing growth factor, bone morphogenetic protein-2 (BMP-2). Different concentrations of PEI were utilized for coating BSA NPs to stabilize the colloidal system and to control the release of BMP-2. The NPs were characterized by size and zeta potential measurements, as well as by Scanning Electron Microscopy and Atomic Force Microscopy. The encapsulation efficiency was typically >90% in all NP preparations. In vitro release kinetics showed that the PEI concentration used for coating the NPs efficiently controlled the release of BMP-2, demonstrating a gradual slowing, sustained release pattern during a 10-day study period. The bioactivity of the encapsulated BMP-2 and the toxicity of the NPs were examined by the alkaline phosphatase (ALP) induction assay and the MTT assay, respectively, using C2C12 cells. The results indicated that PEI was the primary determinant of NP toxicities, and BSA NPs coated with 0.1 mg/mL PEI demonstrated tolerable toxicity, retained the bioactivity of BMP-2, and efficiently slowed the release rate of BMP-2. We conclude that BMP-2 encapsulated in BSA NPs might be an efficient way to deliver the protein for in vivo bone induction. [source] |