Electrospray Ionization-mass Spectrometry (electrospray + ionization-mass_spectrometry)

Distribution by Scientific Domains


Selected Abstracts


Fabrication of enclosed SU-8 tips for electrospray ionization-mass spectrometry

ELECTROPHORESIS, Issue 24 2005
Santeri Tuomikoski Dr.
Abstract We describe a novel electrospray tip design for MS which is fabricated completely out of SU-8 photoepoxy. A three-layer SU-8 fabrication process provides fully enclosed channels and tips. The tip shape and alignment of all SU-8 layers is done lithographically and is therefore very accurate. Fabrication process enables easy integration of additional fluidic functions on the same chip. Separation channels can be made with exactly the same process. Fluidic inlets are made in SU-8 during the fabrication process and no drilling or other postprocessing is needed. Channels have been fabricated and tested in the size range of 10,,m×10,,m,50,,m×200,,m. Mass spectrometric performance of the tips has been demonstrated with both pressure-driven flow and EOF. SU-8 microtips have been shown to produce stable electrospray with EOF in a timescale of tens of minutes. With pressure driven flow stable spray is maintained for hours. Taylor cone was shown to be small in volume and well defined even with the largest channel cross section. The spray was also shown to be well directed with our tip design. [source]


Capillary electrophoresis-laser induced fluorescence-electrospray ionization-mass spectrometry: A case study

ELECTROPHORESIS, Issue 7-8 2005
Carolin Huhn
Abstract The simultaneous hyphenation of capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection and electrospray ionization-mass spectrometry (ESI-MS) as a novel combined detection system for CE is presented. ,-Carbolines were chosen as model analytes with a forensic background. Nonaqueous CE as well as conventional CE with an aqueous buffer system are compared concerning efficiency and obtainable detection limits. The distance between the optical detection window and the sprayer tip was minimized by placing the optical cell directly in front of the electrospray interface. Similar separation efficiencies for both detection modes could thus be obtained. No significant peak-broadening induced by the MS interface was observed. The high fluorescence quantum yield and the high proton affinity of the model analytes investigated resulted in limits of detection in the fg (nmol/L) range for both detection methods. The analysis of confiscated ayahuasca samples and ethanolic plant extracts revealed complementary selectivities for LIF and MS detection. Thus, it is possible to improve peak identification of the solutes investigated by the use of these two detection principles. [source]


On-line concentration of proteins in pressurized capillary electrochromatography coupled with electrospray ionization-mass spectrometry

ELECTROPHORESIS, Issue 7-8 2005
Zhen Liang
Abstract Pressurized capillary electrochromatography (pCEC) and electrospray ionization-mass spectrometry (ESI-MS) have been hyphenated for protein analysis. Taken cytochrome,c, lysozyme, and insulin as samples, the limits of detection (LODs) for absolute concentrations are 10,11,mol (signal-to-noise ratio S/N = 3) with relative standard deviations (RSDs) of retention time and peak area, respectively, of less than 1.7% and 4.8%. In order to improve the detection sensitivity, on-line concentration by field-enhanced sample-stacking effect and chromatographic zone-sharpening effect has been developed, and parameters affecting separation and detection, such as pH and electrolyte concentration in the mobile phase, separation voltage, as well as enrichment voltage and time, have been studied systematically. Under the optimized conditions, the LODs of the three proteins could be decreased up to 100-fold. In addition, the feasibility of such techniques has been further demonstrated by the analysis of modified insulins at a concentration of 20,,g/mL. [source]


Analysis of the glucosinolate pattern of Arabidopsis thaliana seeds by capillary zone electrophoresis coupled to electrospray ionization-mass spectrometry

ELECTROPHORESIS, Issue 7-8 2005
Gerhard Bringmann
Abstract An easy and rapid method for the analysis of intact, non-desulfated glucosinolates by capillary zone electrophoresis (CZE) coupled to electrospray ionization-time of flight-mass spectrometry (ESI-TOF-MS) is described. Surprisingly, an electrolyte and a sheath liquid based on formic acid provided the best results. In this strongly acidic system, the glucosinolates were separated and detected as anions, resulting in an excellent selectivity. Thus, crude plant extracts could be analyzed without any interference of matrix constituents. The sensitivity together with mass accuracy and true isotopic pattern of the TOF-MS allowed identification of a broad series of glucosinolates in Arabidopsis thaliana seeds. [source]


Characterization of glyco isoforms in plasmaderived human antithrombin by on-line capillary zone electrophoresis-electrospray ionization-quadrupole ion trap-mass spectrometry of the intact glycoproteins

ELECTROPHORESIS, Issue 13 2004
Uwe M. Demelbauer
Abstract The carbohydrate structures of five isoforms of ,-AT and two isoforms of ,-AT were determined by applying capillary zone electrophoresis (CZE) on-line coupled to electrospray ionization-mass spectrometry (ESI-MS) using an ion-trap analyzer. For the AT preparations gained from a plasma pool at least semiquantitative information on the isoform-distributions could be gained. Unlike to the commonly used approaches starting from enzymatically treated glycoproteins, this approach deals with intact proteins. The high accuracy of the molecular mass determination obtained by the ion-trap analyzer allows one to calculate and ascertain the carbohydrate composition assuming no variations in the protein moiety of AT and to exclude or confirm the presence of the potential post-translational or other modifications. Therefore, the direct coupling of CZE with ESI-MS does not only represent a fast alternative technique to two-dimensional electrophoresis (2-DE) but serves as a method which provides structural information complementary to that gained from peptide mapping methods. [source]


Development of capillary zone electrophoresis-electrospray ionization-mass spectrometry for the determination of lamotrigine in human plasma

ELECTROPHORESIS, Issue 13 2004
Jack Zheng
Abstract A method of coupling capillary zone electrophoresis (CZE) with electrospray ionization-mass spectrometry (ESI-MS) detection has been developed for monitoring an antiepileptic drug, lamotrigine (LTG) in human plasma. The CZE-MS was developed in three stages: (i) CZE separation and ESI-MS detection of LTG and tyramine (TRM, internal standard) were simultaneously optimized by studying the influence of CZE background electrolyte (BGE) pH, BGE ionic strength, and nebulizer pressure of the MS sprayer; (ii) sheath liquid parameters, such as pH, ionic strength, organic modifier content, and flow rate of the sheath liquid, were systematically varied under optimum CZE-MS conditions developed in the first stage; (iii) MS sprayer chamber parameters (drying gas temperature and drying gas flow rate) were varied for the best MS detection of LTG. The developed assay was finally applied for the determination of LTG in plasma samples. The linear range of LTG in plasma sample assay was between 0.1,5.0 ,g/mL with a limit of detection as low as 0.05 ,g/mL and run time less than 6 min. Finally, the concentration-time profile of LTG in human plasma sample was found to correlate well when CZE-ESI-MS was compared to a more established method of high-performance liquid chromatography with ultraviolet detection. [source]


High-efficiency peptide analysis on monolithic multimode capillary columns: Pressure-assisted capillary electrochromatography/capillary electrophoresis coupled to UV and electrospray ionization-mass spectrometry

ELECTROPHORESIS, Issue 21 2003
Alexander R. Ivanov
Abstract High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 ,m inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n -propanol and formamide as porogens and azobisisobutyronitrile as initiator. N -Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300,000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method. [source]


Deuterium isotope effects observed during competitive binding chiral recognition electrospray ionization,mass spectrometry of cinchona alkaloid-based systems

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 2 2006
Kevin A. Schug
Abstract Deuterium isotope effects are reported for binding between tert -butylcarbamoyl-quinine/quinidine chiral selectors and isotopomeric quasienantiomers of N -(3,5-dinitrobenzoyl)leucine measured using electrospray ionization-mass spectrometry (ESI-MS) and competitive binding. Evaluation of mixtures of each selector with one labeled and one unlabeled enantiomeric selectand of identical configuration showed a significant difference in measured ion abundances of diastereomeric complexes between the selector and each selectand. It was found that in some cases, the complex containing the nondeuterated selectand was 15% more abundant than its deuterated counterpart. On the basis of an assessment of solution- and gas-phase isotope effects reported in the literature, a series of control experiments were performed to study the origin of the effects. On the basis of these measurements, our preliminary conclusion is that the differing gas-phase physicochemical nature of the deuterated versus nondeuterated selectand represents the strongest contribution to the observed effect in this chiral molecular recognition system. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Acrylonitrile-Butadiene Rubber (NBR) Prepared via Living/Controlled Radical Polymerization (RAFT)

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 18 2010
Andreas Kaiser
Abstract In the current work we present results on the controlled/living radical copolymerization of acrylonitrile (AN) and 1,3-butadiene (BD) via reversible addition fragmentation chain transfer (RAFT) polymerization techniques. For the first time, a solution polymerization process for the synthesis of nitrile butadiene rubber (NBR) via the use of dithioacetate and trithiocarbonate RAFT agents is described. It is demonstrated that the number average molar mass, , of the NBR can be varied between a few thousand and 60,000,g,·,mol,1 with polydispersities between 1.2 and 2.0 (depending on the monomer to polymer conversion). Excellent agreement between the experimentally observed and the theoretically expected molar masses is found. Detailed information on the structure of the synthesized polymers is obtained by variable analytical techniques such as infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and electrospray ionization-mass spectrometry (ESI-MS). [source]


Conformational changes in ,-endorphin as studied by electrospray ionization mass spectrometry,

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 23 2001
Hui Lin
Because of a wide range of physiological functions, the structure of ,-endorphin (BE) is of great interest. In this study, conformational changes in BE induced by methanol are explored with electrospray ionization-mass spectrometry (ESI-MS). Differences in the charge-state distribution (CSD) and the extent of hydrogen/deuterium (H/D) exchange were used to monitor the conformational changes. The latter experiments were conducted via time-resolved ESI-MS in a continuous-flow apparatus. Both these techniques demonstrate that BE exists in a random coil open structure in aqueous media, but it acquires a more compact conformation with increased concentration of methanol. The H/D exchange experiments reveal that BE forms 61% ,-helix in mixed solvents. Copyright © 2001 John Wiley & Sons, Ltd. [source]


A rapid assay for angiotensin-converting enzyme activity using ultra-performance liquid chromatography,mass spectrometry

BIOMEDICAL CHROMATOGRAPHY, Issue 3 2010
Fang Geng
Abstract Angiotensin-converting enzyme (ACE) plays an important role in the renin,angiotensin system and ACE activity is usually assayed in vitro by monitoring the transformation from a substrate to the product catalyzed by ACE. A rapid and sensitive analysis method or ACE activity by quantifying simultaneously the substrate hippuryl,histidyl,leucine and its product hippuric acid using an ultra-performance liquid chromatography coupled with electrospray ionization-mass spectrometry (UPLC-MS) was first developed and applied to assay the inhibitory activities against ACE of several natural phenolic compounds. The established UPLC-MS method showed obvious advantages over the conventional HPLC analysis in shortened running time (3.5,min), lower limit of detection (5,pg) and limit of quantification (18,pg), and high selectivity aided by MS detection in selected ion monitoring (SIM) mode. Among the six natural products screened, five compounds, caffeic acid, caffeoyl acetate, ferulic acid, chlorogenic acid and resveratrol indicated potent in vitro ACE inhibitory activity with IC50 values of 2.527 ± 0.032, 3.129 ± 0.016, 10.898 ± 0.430, 15.076 ± 1.211 and 6.359 ± 0.086,mm, respectively. A structure,activity relationship estimation suggested that the number and the situation of the hydroxyls on the benzene rings and the acrylic acid groups may play the most predominant role in their ACE inhibitory activity. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Analysis of chemical and metabolic components in traditional Chinese medicinal combined prescription containing Radix Salvia miltiorrhiza and Radix Panax notoginseng by LC-ESI-MS methods

BIOMEDICAL CHROMATOGRAPHY, Issue 8 2007
Ying-Jie Wei
Abstract High-performance liquid chromatography,electrospray ionization-mass spectrometry (LC-ESI-MS) methods were developed for the analysis of chemical and metabolic components in traditional Chinese medicinal combined prescription containing Radix Salvia miltiorrhiza and Radix Panax notoginseng (commonly known as Fufang Danshen prescription, FDP). The HPLC experiments used a reversed-phase Zorbax C18 column with the column temperature at 30°C and a binary mobile phase system consisting of aqueous formic acid (0.1%, v/v) and acetonitrile using a gradient elution at the flow rate of 1.0 mL/min. The ESI-MS was operated with a single-quadrupole mass spectrometer in both negative and positive ion modes. 36 major chromatographic peaks of FDP, including 14 saponins, 13 phenolic acids and nine diterpenoid quinones were characterized by their MS spectra and in comparison with some of the reference standards. In addition, after oral administration of extraction of FDP, the rat's plasma, urine and feces were also analyzed; 53 metabolic components including 30 original components and 23 transformative components of FDP were detected, and possible metabolic pathways of some components in FDP were given. The analysis of chemical and metabolic components in FDP by HPLC-MS methods could be a useful means of identifying the multi-components of FDP and to hint at their possible metabolic mechanism of action in the body. Copyright © 2007 John Wiley & Sons, Ltd. [source]