Electrospray Ionization Mass Spectra (electrospray + ionization_mass_spectrum)

Distribution by Scientific Domains


Selected Abstracts


Purification and structure of the major product obtained by reaction of NADPH and NMNH with the myeloperoxidase/hydrogen peroxide/chloride system

FEBS JOURNAL, Issue 10 2001
Françoise Auchère
The first spectrophotometric study of the reaction of the myeloperoxidase/H2O2/Cl, system with NADPH and NMNH showed that the reaction products were not the corresponding oxidized nucleotides and that modifications would take place on the nicotinamide part of the molecule [Auchère, F. & Capeillère-Blandin, C. (1999) Biochem. J. 343, 603,613]. In this report, in order to obtain more precise information on the structural modifications and mechanism of the reaction, we focus on the purification and isolation of products derived from NADPH and NMNH by RP-HPLC. Electrospray ionization mass spectra indicated that the relative height of the peaks reflected that of the natural isotopic abundance of 35Cl and 37Cl, providing evidence that the products derived from NADPH and NMNH were monochlorinated. Moreover, calculated masses revealed the 1 : 1 addition of HOCl to the molecule. Various 1D and 2D NMR experiments provided data for the assignments of the chemical shifts of protons and carbons and the coupling constants of the protons of the chlorinated nucleotides. Further NOESY experiments allowed the characterization of the spatial structure of the chlorinated product and showed that trans HOCl addition occurred at the C5=C6 carbon double bond of the nicotinamide ring, leading to a chlorohydrin. [source]


Influence on mass-selective ion ejection of the phase difference between the drive r.f. and the axial modulation potentials

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 6 2005
G. Dobson
Abstract The phase difference between the drive r.f. and the axial modulation potential is known to influence significantly the mass shift, and all commercial ion trap mass spectrometers use a fixed value for this difference. However, although this important parameter is partly responsible for the good precision achievable today in most commercial ion traps, little discussion on the variation of the phase difference between the drive r.f. and the axial modulation potential has appeared in the literature. We present here an examination of the influence of a low-level axial modulation potential superimposed by capacitive coupling between the electrodes. Low-level axial modulation potentials are used for certain analytical scans such as reverse scan or slow scan speeds. Such low-level potentials help to prevent deterioration of mass resolution due to, for example, the dissociation of the ions during their resonant ejection from the ion trap. Reverse and forward scans are used to illustrate the mass shift and change in resolution, caused by a change in the phase difference between the drive r.f. potential applied to the ring electrode and the axial modulation potential applied on an end-cap electrode, in electrospray ionization mass spectra. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2003
Rita Grandori
Abstract The influence of tertiary structure on the electrospray ionization mass spectra of proteins is a well known and broadly exploited phenomenon. However, the underlying mechanism is not well understood. This paper discusses the bases and the implications of the two current hypotheses (solvent accessibility and Coulombic repulsions), pointing out the remaining open questions. Evidence reported here supports a third hypothesis, i.e. that intramolecular interactions in folded proteins play a key role in determining the observed charge-state distributions. It is proposed that native protein structures stabilize to a large extent pre-existing charges of the opposite polarity to the net charge of the ion, preventing their neutralization during the electrospray process. Thus, the higher charge states of unfolded conformations, relative to the folded structure, would not derive from a more extensive ionization of the former, but rather from a higher content of neutralizing charges in the latter. This interpretation allows several other problematic observations to be explained, including the different shapes of the spectra of folded and unfolded proteins, the discrepancies between observed and predicted gas-phase reactivity of protein ions and the apparent inconsistency of positive- and negative-ion mode results. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Comparison of negative ion electrospray mass spectra measured by seven tandem mass analyzers towards library formation

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 2 2008
ina Volná
A library of negative ion electrospray ionization mass spectra and tandem mass spectra (MS/MS) of sulfonated dyes has been developed for fast identification purposes. The uniform protocol has been elaborated and applied to the measurements of more than 50 anionic dyes. Three collision energies are selected in our protocol which ensures that at least one of them provides a suitable ratio of product ions to the precursor ion. The robustness is investigated with altered values of tuning parameters (e.g. the pressure of the nebulizing gas, the temperature and the flow rate of drying gas, and the mobile phase composition). The results of the inter-laboratory comparison of product ion mass spectra recorded on seven different tandem mass spectrometers (three ion traps, two triple quadrupoles and two hybrid quadrupole time of flight instruments) are presented for four representative anionic dyes , azo dye Acid Red 118, anthraquinone dye Acid Violet 43, triphenylmethane dye Acid Blue 1 and Al(III) metal-complex azo dye. The fragmentation patterns are almost identical for all tandem mass analyzers, only the ratios of product ions differ somewhat which confirms the possibility of spectra transfer among different mass analyzers with the goal of library formation. Copyright © 2007 John Wiley & Sons, Ltd. [source]


The effect of tetrahydrofuran as solvent on matrix-assisted laser desorption/ionization and electrospray ionization mass spectra of functional polystyrenes

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 2 2006
Dmitri V. Zagorevskii
It is demonstrated that tetrahydrofuran (THF) should be used with caution as a solvent in polymer sample preparation for matrix-assisted laser desorption/ionization (MALDI) analyses. The presence of peroxides in THF may cause the oxidation of chemically active groups. This effect is illustrated in the case of S-containing polystyrene derivatives. The oxidation of the trithiocarbonate group resulted in the formation of poly(styrene)sulfonic acids, R(CH2CHPh)nSO3H, which was detected in negative mode by MALDI and electrospray ionization (ESI) methods after the samples remained in THF for several hours. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Comparison of negative and positive ion electrospray ionization mass spectra of calmodulin and its complex with trifluoperazine

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 15 2005
Stephen J. Watt
The protein calmodulin (apoCaM) undergoes a conformational change when it binds calcium. This structure of the protein (Ca4CaM) is a dumbbell-shaped molecule that undergoes a further profound conformational change on binding of the antipsychotic drug trifluoperazine (TFP). Experimental conditions were developed to prepare samples of apoCaM, Ca4CaM and Ca4CaM/TFP that were substantially free of sodium. The effects of the conformational changes of calmodulin on the charge-state distributions observed in positive ion and negative ion electrospray ionization (ESI) mass spectra were examined. Conversion of apoCaM into Ca4CaM was concomitant with a change in the negative ion ESI mass spectrum whereby the 16, ion was the most abundant ion observed for the apo form and the 8, ion was the most abundant for the complex. In contrast, in the positive ion ESI mass spectra of apoCaM and Ca4CaM, the most abundant species in each case was the 8+ ion. When a complex of Ca4CaM with TFP was prepared, the most abundant species was the 5+ ion. This is consistent with a conformational change of Ca4CaM that rendered some basic sites inaccessible to ionization in the ESI process. Using the same Ca4CaM/TFP mixture, no complex with TFP was observed in negative ion ESI mass spectra. These observations are discussed in the context of the structural changes that are known to occur in calmodulin, and suggestions are made to explain the apparently conflicting data. The results reported here reflect on the validity of using differences in charge-state distributions observed in ESI mass spectra to assess conformational changes in proteins. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Cluster ions of diquat and paraquat in electrospray ionization mass spectra and their collision-induced dissociation spectra

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2003
Boris L. Milman
Cluster ions such as [Cat+X+nM]+ (n,=,0,4); [Cat-H+nM]+ (n,=,1,3); and [2(Cat-H)+X+nM]+ (n,=,0,2), where Cat, X, and M are the dication, anion, and neutral salt (CatX2), respectively, are observed in electrospray ionization (ESI) mass spectrometry of relatively concentrated solutions of diquat and paraquat. Collision-induced dissociation (CID) reactions of the clusters were observed by tandem mass spectrometry (MS/MS), including deprotonation to form [Cat-H]+, one-electron reduction of the dication to form Cat+., demethylation of the paraquat cation to form [Cat-CH3]+, and loss of neutral salt to produce smaller clusters. The difference in acidity and reduction power between diquat and paraquat, evaluated by thermodynamical estimates, can rationalize the different fractional yields of even-electron ([Cat-H]+ and its clusters) and odd-electron (mostly Cat+.) ions in ESI mass spectra of these pesticides. The [Cat+n,·,Solv]2+ doubly charged cluster ions, where n,,,2 and Solv is the solvent molecule (methanol and/or water), are only observed as very weak peaks in precursor ion CID spectra of the Cat2+ salt cation at low collision energy. The presence of an anion and a solvent molecule in a cluster is assumed to be related to existence of tight and loose ion pairs, respectively, in multiply charged droplets/ions formed by ESI. The results emphasize again the role of solution chemistry concepts such as acidity/basicity, redox power, and ion-pair formation, for ESI. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Positive ion electrospray ionization mass spectrometry of double-stranded DNA/drug complexes

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 24 2001
Rajesh Gupta
An Erratum has been published for this article in Rapid Communicatons in Mass Spectrometry 16(7) 2002,740,741. Positive ion electrospray ionization mass spectra of 16 base-pair double-stranded (ds)DNA have been obtained with essentially no ions from single-stranded DNA present. Single-stranded DNA was minimized by: (1) careful choice of DNA sequences; (2) the use of a relatively high salt concentration (0.1,M ammonium acetate, pH 8.5), and, (3) a low desolvation temperature (40,°C). Similarly, ESI-MS complexes of dsDNA with cisplatin, daunomycin and distamycin were obtained that contained only negligible amounts of single-stranded DNA. The complexes with daunomycin and distamycin were more stable to strand separation in the gas phase than dsDNA alone. This is in agreement with solution studies and with other recent gas phase results. These data contrast with many earlier ESI-MS studies of dsDNA and DNA/drug complexes in which ions from ssDNA are also normally observed. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Bioaccumulation of the hepatotoxic microcystins in various organs of a freshwater snail from a subtropical Chinese Lake, Taihu Lake, with dense toxic Microcystis blooms

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2007
Dawen Zhang
Abstract In this paper, we describe the seasonal dynamics of three common microcystins (MCs; MC-RR, MC-YR, and MC-LR) in the whole body, hepatopancreas, intestine, gonad, foot, remaining tissue, and offspring of a freshwater snail, Bellamya aeruginosa, from Gonghu Bay of Lake Taihu, China, where dense toxic Microcystis blooms occur in the warm seasons. Microcystins were determined by liquid chromatography electrospray ionization mass spectrum. Microcystin (MC-RR + MC-YR + MC-LR) content of the offspring and gonad showed high positive correlation, indicating that microcystins could transfer from adult females to their young with physiological connection. This study is the first to report the presence of microcystins in the offspring of the adult snail. The majority of the toxins were present in the intestine (53.6%) and hepatopancreas (29.9%), whereas other tissues contained only 16.5%. If intestines are excluded, up to 64.3% of the toxin burden was allocated in the hepatopancreas. The microcystin content in the intestine, hepatopancreas, and gonad were correlated with the biomass of Microcystis and intracellular and extracellular toxins. Of the analyzed foot samples, 18.2% were above the tolerable daily microcystin intake recommended by the World Health Organization (WHO) for human consumption. This result indicates that public health warnings regarding human ingestion of snails from Taihu Lake are warranted. In addition, further studies are needed to evaluate the occurrence by Microcystis in relation to spatial and temporal changes in water quality. [source]