Home About us Contact | |||
Electronics Applications (electronics + application)
Selected AbstractsThe Influence of Film Morphology in High-Mobility Small-Molecule:Polymer Blend Organic TransistorsADVANCED FUNCTIONAL MATERIALS, Issue 14 2010Jeremy Smith Abstract Organic field-effect transistors (OFETs) based upon blends of small molecular semiconductors and polymers show promise for high performance organic electronics applications. Here the charge transport characteristics of high mobility p-channel organic transistors based on 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene:poly(triarylamine) blend films are investigated. By simple alteration of the film processing conditions two distinct film microstructures can be obtained: one characterized by small spherulitic grains (SG) and one by large grains (LG). Charge transport measurements reveal thermally activated hole transport in both SG and LG film microstructures with two distinct temperature regimes. For temperatures >115,K, gate voltage dependent activation energies (EA) in the range of 25,60 meV are derived. At temperatures <115,K, the activation energies are smaller and typically in the range 5,30 meV. For both film microstructures hole transport appears to be dominated by trapping at the grain boundaries. Estimates of the trap densities suggests that LG films with fewer grain boundaries are characterized by a reduced number of traps that are less energetically disordered but deeper in energy than for small SG films. The effects of source and drain electrode treatment with self-assembled monolayers (SAMs) on current injection is also investigated. Fluorinated thiol SAMs were found to alter the work function of gold electrodes by up to ,1,eV leading to a lower contact resistance. However, charge transport analysis suggests that electrode work function is not the only parameter to consider for efficient charge injection. [source] Intrinsic Surface Dipoles Control the Energy Levels of Conjugated PolymersADVANCED FUNCTIONAL MATERIALS, Issue 24 2009Georg Heimel Abstract Conjugated polymers are an important class of materials for organic electronics applications. There, the relative alignment of the electronic energy levels at ubiquitous organic/(in)organic interfaces is known to crucially impact device performance. On the prototypical example of poly(3-hexylthiophene) and a fluorinated derivative, the energies of the ionization and affinity levels of , -conjugated polymers are revealed to critically depend on the orientation of the polymer backbones with respect to such interfaces. Based on extensive first-principles calculations, an intuitive electrostatic model is developed that quantitatively traces these observations back to intrinsic intramolecular surface dipoles arising from the , -electron system and intramolecular polar bonds. The results shed new light on the working principles of organic electronic devices and suggest novel strategies for materials design. [source] Surface-Modified High- k Oxide Gate Dielectrics for Low-Voltage High-Performance Pentacene Thin-Film Transistors,ADVANCED FUNCTIONAL MATERIALS, Issue 6 2007S. Kim Abstract In this study, pentacene thin-film transistors (TFTs) operating at low voltages with high mobilities and low leakage currents are successfully fabricated by the surface modification of the CeO2,SiO2 gate dielectrics. The surface of the gate dielectric plays a crucial role in determining the performance and electrical reliability of the pentacene TFTs. Nearly hysteresis-free transistors are obtained by passivating the devices with appropriate polymeric dielectrics. After coating with poly(4-vinylphenol) (PVP), the reduced roughness of the surface induces the formation of uniform and large pentacene grains; moreover, ,OH groups on CeO2,SiO2 are terminated by C6H5, resulting in the formation of a more hydrophobic surface. Enhanced pentacene quality and reduced hysteresis is observed in current,voltage (I,V) measurements of the PVP-coated pentacene TFTs. Since grain boundaries and ,OH groups are believed to act as electron traps, an OH-free and smooth gate dielectric leads to a low trap density at the interface between the pentacene and the gate dielectric. The realization of electrically stable devices that can be operated at low voltages makes the OTFTs excellent candidates for future flexible displays and electronics applications. [source] "Click" Dielectrics: Use of 1,3-Dipolar Cycloadditions to Generate Diverse Core-Shell Nanoparticle Structures with Applications to Flexible ElectronicsMACROMOLECULAR RAPID COMMUNICATIONS, Issue 18 2008Meghann A. White Abstract We have synthesized a "universal ligand" incorporating a phosphonate surface anchor and a terminal alkyne moiety which binds to TiO2 nanoparticles and exhibits excellent dispersity in organic solvents. The alkyne functionality permits attachment of azide terminated polymer shells using "click" chemistry. Thus TiO2 core nanoparticles have been encapsulated with both polystyrene and poly(t -butyl acrylate) shells. The TiO2 -poly(t -butyl acrylate) core shell nanoparticles are amenable to further chemical transformation into TiO2 -poly(acrylic acid) nanoparticles through ester hydrolysis. These TiO2 -polyacrylic acid nanoparticles are dispersible in aqueous solution. The resulting core-shell nanoparticles have been incorporated as high K dielectric films in capacitor and organic thin film transistor devices and are promising new materials for flexible electronics applications. [source] Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cationPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2008Ulrike Braun Abstract The pyrolysis and fire behavior of glass-fiber reinforced poly(butylene terephthalate) (PBT/GF) with two different metal phosphinates as flame retardants in combination with and without melamine cyanurate (MC) were analyzed by means of thermogravimetry, thermogravimetry coupled with infrared spectroscopy, flammability, and cone calorimeter tests as well as scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence spectroscopy. In PBT/GF, dosages of 13,20% of the halogen-free flame retardant aluminum phosphinate or aluminum phosphinate in combination with MC fulfill the requirements for electrical engineering and electronics applications (UL 94,=,V-0; LOI,>,42%), whereas the use of the same amount of zinc phosphinate or zinc phosphinate in combination with MC does not improve the fire behavior satisfactorily (UL 94,=,HB; LOI,=,27,28%). The performance under forced flaming conditions (cone calorimeter) is quite similar for both of the metal phosphinates. The use of aluminum and zinc salts results in similar flame inhibition predominantly due to the release of the phosphinate compounds in the gas phase. Both metal phosphinates and MC interact with the polymer changing the decomposition characteristics. However, part of the zinc phosphinate vaporizes as a complete molecule. Because of the different decomposition behavior of the metal salts, only the aluminum phosphinate results in a small amount of thermally stable carbonaceous char. In particular, the aluminum phosphinate-terephthalate formed is more stable than the zinc phosphinate-terephthalate. The small amount of char has a crucial effect on the thermal properties and mechanical stability of the residue and thus the flammability. Copyright © 2008 John Wiley & Sons, Ltd. [source] |