Home About us Contact | |||
Electronic Ground State (electronic + ground_state)
Selected AbstractsSpins as probes of different electronic statesCONCEPTS IN MAGNETIC RESONANCE, Issue 2 2007Dieter Suter Abstract Nuclear spins are efficient probes of electronic states. Because most NMR experiments are performed in thermal equilibrium, they probe the electronic ground state,the only state that is significantly populated under ambient conditions. Probing electronically excited states becomes possible, if magnetic resonance techniques are combined with optical (laser) excitation. Depending on the nature of the electronic state, drastic changes of the magnetic resonance parameters may be observed. We discuss the basic principles of this type of investigation. Depending on the lifetime of the electronically excited state, it is possible to measure separate spectra of ground and excited state if the lifetime is long on the NMR timescale, or an averaged spectrum if the lifetime is short. We present examples for both limiting cases using rare earth ions and semiconductor heterostructures. © 2007 Wiley Periodicals, Inc. Concepts Magn Reson Part A 30A: 116,126, 2007. [source] Outer sphere mutagenesis of Lactobacillus plantarum manganese catalase disrupts the cluster coreFEBS JOURNAL, Issue 6 2003Mechanistic implications X-ray crystallography of the nonheme manganese catalase from Lactobacillus plantarum (LPC) [Barynin, V.V., Whittaker, M.M., Antonyuk, S.V., Lamzin, V.S., Harrison, P.M., Artymiuk, P.J. & Whittaker, J.W. (2001) Structure9, 725,738] has revealed the structure of the dimanganese redox cluster together with its protein environment. The oxidized [Mn(III)Mn(III)] cluster is bridged by two solvent molecules (oxo and hydroxo, respectively) together with a µ1,3 bridging glutamate carboxylate and is embedded in a web of hydrogen bonds involving an outer sphere tyrosine residue (Tyr42). A novel homologous expression system has been developed for production of active recombinant LPC and Tyr42 has been replaced by phenylalanine using site-directed mutagenesis. Spectroscopic and structural studies indicate that disruption of the hydrogen-bonded web significantly perturbs the active site in Y42F LPC, breaking one of the solvent bridges and generating an ,open' form of the dimanganese cluster. Two of the metal ligands adopt alternate conformations in the crystal structure, both conformers having a broken solvent bridge in the dimanganese core. The oxidized Y42F LPC exhibits strong optical absorption characteristic of high spin Mn(III) in low symmetry and lower coordination number. MCD and EPR measurements provide complementary information defining a ferromagnetically coupled electronic ground state for a cluster containing a single solvent bridge, in contrast to the diamagnetic ground state found for the native cluster containing a pair of solvent bridges. Y42F LPC has less than 5% of the catalase activity and much higher Km for H2O2 (,1.4 m) at neutral pH than WT LPC, although the activity is slightly restored at high pH where the cluster is converted to a diamagnetic form. These studies provide new insight into the contribution of the outer sphere tyrosine to the stability of the dimanganese cluster and the role of the solvent bridges in catalysis by dimanganese catalases. [source] An ab initio potential energy surface and vibrational energy levels of ZnH2JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 5 2010Zheng Guo Huang Abstract A three-dimensional potential energy surface of the electronic ground state of ZnH2 () molecule is constructed from more than 7500 ab initio points calculated at the internally contracted multireference configuration interaction with the Davidson correction (icMRCI+Q) level employing large basis sets. The calculated relative energies of various dissociation reactions are in good agreement with the previous theoretical/experimental values. Low-lying vibrational energy levels of ZnH2, ZnD2, and HZnD are calculated on the three-dimensional potential energy surface using the Lanczos algorithm, and found to be in good agreement with the available experimental band origins and the previous theoretical values. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010 [source] Quinoidal Oligothiophenes: Towards Biradical Ground-State SpeciesCHEMISTRY - A EUROPEAN JOURNAL, Issue 2 2010Ortiz Dr., Rocío Ponce Abstract A family of quinoidal oligothiophenes, from the dimer to the hexamer, with fused bis(butoxymethyl)cyclopentane groups has been extensively investigated by means of electronic and vibrational spectroscopy, electrochemical measurements, and density functional calculations. The latter predict that the electronic ground state always corresponds to a singlet state and that, for the longest oligomers, this state has biradical character that increases with increasing oligomer length. The shortest oligomers display closed-shell quinoidal structures. Calculations also predict the existence of very low energy excited triplet states that can be populated at room temperature. Aromatization of the conjugated carbon backbone is the driving force that determines the increasing biradical character of the ground state and the appearance of low-lying triplet states. UV/Vis, Raman, IR, and electrochemical experiments support the aromatic biradical structures predicted for the ground state of the longest oligomers and reveal that population of the low-lying triplet state accounts for the magnetic activity displayed by these compounds. [source] High-Electron-Density C6H6 Units: Stable Ten-,-Electron Benzene ComplexesCHEMISTRY - A EUROPEAN JOURNAL, Issue 10 2005Martin Diefenbach Dr. Abstract The first stable benzene molecule with ten , electrons is predicted. Stability is achieved through barium atoms acting as an electron-donating "matrix" to C6H6 in the inverted sandwich complex [Ba2(C6H6)]. The bis(barium)benzene complex has been computed at the density functional level of theory by using the hybrid functional mPW1PW91. Ab initio calculations were performed by using the coupled-cluster expansion, CCSD(T). Nucleus independent chemical shift (NICS) indices imply distinct aromatic character in the benzene ring of bis(barium)benzene. The D6h -symmetric structure with a 1A1g electronic ground state represents a thermochemically stable, aromatic benzene molecule with four excess , electrons, stabilised by two barium ions. A possible molecular wire, built up from Ba end-capped thorium,benzene "sandwiches", is discussed. [source] |