Home About us Contact | |||
Electronic Excited States (electronic + excited_states)
Selected AbstractsThe electronically excited states of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine): Vertical excitationsINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 11 2009Itamar Borges Jr Abstract The RDX molecule, hexahydro-1,3,5-trinitro-1,3,5-triazine, is a key component for several energetic materials, which have important practical applications as explosives. A systematic study of the electronic excited states of RDX in gas phase using time-dependent density functional theory (TDDFT), algebraic diagrammatic construction through second order method [ADC (2)], and resolution of the identity coupled-cluster singles and doubles method (RI-CC2) was carried out. Transition energies and optical oscillator strengths were computed for a maximum of 40 transitions. RI-CC2 and ADC (2) predict a spectrum shaped by three intense ,-,* transitions, two with charge transfer and one with localized character. TDDFT fails in the description of the charge transfer states. The low-energy band of the experimental UV spectrum of RDX is assigned to the first charge transfer state. Two alternative assignments of the high-energy band are proposed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 [source] Studies on 4,7-di-substitution effects of one ligand in [Ru(Phen)3]2 with DFT methodJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 4 2002Kangcheng Zheng Abstract Studies on the complex [Ru(phen)3]2+ (phen = 1,10-phenanthroline) and its derivatives with 4,7-di-substitution on one ligand(phen) were carried out using the DFT method at the B3LYP/LanL2DZ level of theory. The trends in the substituent effects caused by the electron-pushing group (OH) and the electron-withdrawing group (F), on the electronic structures and the related properties, for example, the energies and the components of some frontier molecular orbitals, the spectroscopy properties, and the net charge populations of some main atoms of the complexes, etc., have been investigated. The computational results show that the substituents have some interesting effects on the electronic structures and the related properties of the complexes. First, according to the analysis of components of LUMO of the complexes, the electron-withdrawing group (F) can activate the main ligand (the substituted ligand, i.e., 2R-phen) and passivate the coligands, on the contrary, the electron-pushing group (OH) can activate the coligands and passivate the main ligand in the first electronic excited states of complexes. Second, both the electron-pushing group (OH) and the electron-withdrawing group (F) can cause a red shift in the electronic ground bands. Third, the characteristics of the atomic net charge populations on the main ligand can also be analyzed in detail by means of a schematic map expressed by several series of arrowheads based on the law of polarity alternation and the idea of polarity interference. The most negative charges are populated on N1, the next most net negative charges are populated on C3 among the skeleton atoms for the three complexes, etc. The computational results can be better used to explain some experimental phenomena and trends. © 2002 Wiley Periodicals, Inc. J Comput Chem 4: 436,443, 2002; DOI 10.1002/jcc.10038 [source] First-principles optical spectra of low dimensional systemsPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 15 2005Letizia Chiodo Abstract Low dimensional systems, such as organic molecules, nanotubes, nanowires, have attracted great interest in the last few years, due to their possible application in nanodevices. It is therefore important to describe accurately the electronic excitations, with highly reliable and efficient ab-initio approaches. A standard technique for studying the ground-state properties is the Density Functional Theory; however when electronic excited states are involved, the many-body Green's functions theory is used for obtaining quasi-particle excitation energies and optical spectra. In this paper we will present the current status of this theoretical and computational approach, showing results for a bulk semiconductor and for two different kinds of low dimensional systems. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Calculation of the Vibrationally Resolved, Circularly Polarized Luminescence of d -Camphorquinone and (S,S)- trans -,-HydrindanoneCHEMPHYSCHEM, Issue 11 2010Benjamin Pritchard Abstract Circularly polarized luminescence (CPL), the differential emission of left- and right-handed circularly polarized light from a molecule, is modeled by using time-dependent density functional theory. Calculations of the CPL spectra for the first electronic excited states of d -camphorquinone and (S,S)- trans -,-hydrindanone under the Franck,Condon approximation and using various functionals are presented, as well as calculations of absorption, emission, and circular dichroism spectra. The functionals B3LYP, BHLYP, and CAM-B3LYP are employed, along with the TZVP and aug-cc-pVDZ Gaussian-type basis sets. For the lowest-energy transitions, all functionals and basis sets perform comparably, with the long-range-corrected CAM-B3LYP better reproducing the excitation energy of camphorquinone but leading to a blue shift with respect to experiment for hydrindanone. The vibrationally resolved spectra of camphorquinone are very well reproduced in terms of peak location, widths, shapes, and intensities. The spectra of hydrindanone are well reproduced in terms of overall envelope shape and width, as well as the lack of prominent vibrational structure in the emission and CPL spectra. Overall the simulated spectra compare well with experiment, and reproduce the band shapes, emission red shifts, and presence or absence of visible vibrational fine structure. [source] |