Home About us Contact | |||
Electronic Devices (electronic + device)
Kinds of Electronic Devices Selected AbstractsThe Diagnostic Evolution of the Cardiac Implantable Electronic Device: The Implantable Monitor of IschemiaJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2008T. JARED BUNCH M.D. No abstract is available for this article. [source] Conductance Enhancement Mechanisms of Printable Nanoparticulate Indium Tin Oxide (ITO) Layers for Application in Organic Electronic Devices,ADVANCED ENGINEERING MATERIALS, Issue 4 2009Michael Gross We present and discuss several methods to enhance the electrical properties of nanoparticle dispersion derived ITO-layers. A maximum conductance of 132,,,1,cm,1 was achieved and films with a sheet resistance down to 5,,/, were produced. To demonstrate their applicability as electrodes in optoelectronic elements we assembled functioning polymer LED-s on them. [source] Interface Modification to Improve Hole-Injection Properties in Organic Electronic Devices,ADVANCED FUNCTIONAL MATERIALS, Issue 8 2006A. Choulis Abstract The performance of organic electronic devices is often limited by injection. In this paper, improvement of hole injection in organic electronic devices by conditioning of the interface between the hole-conducting layer (buffer layer) and the active organic semiconductor layer is demonstrated. The conditioning is performed by spin-coating poly(9,9-dioctyl-fluorene- co - N - (4-butylphenyl)-diphenylamine) (TFB) on top of the poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) buffer layer, followed by an organic solvent wash, which results in a TFB residue on the surface of the PEDOT:PSS. Changes in the hole-injection energy barriers, bulk charge-transport properties, and current,voltage characteristics observed in a representative PFO-based (PFO: poly(9,9-dioctylfluorene)) diode suggest that conditioning of PEDOT:PSS surface with TFB creates a stepped electronic profile that dramatically improves the hole-injection properties of organic electronic devices. [source] Aligned, Ultralong Single-Walled Carbon Nanotubes: From Synthesis, Sorting, to Electronic DevicesADVANCED MATERIALS, Issue 21 2010Zhongfan Liu Abstract Aligned, ultralong single-walled carbon nanotubes (SWNTs) represent attractive building blocks for nanoelectronics. The structural uniformity along their tube axis and well-ordered two-dimensional architectures on wafer surfaces may provide a straightforward platform for fabricating high-performance SWNT-based integrated circuits. On the way towards future nanoelectronic devices, many challenges for such a specific system also exist. This Review summarizes the recent advances in the synthesis, identification and sorting, transfer printing and manipulation, device fabrication and integration of aligned, ultralong SWNTs in detail together with discussion on their major challenges and opportunities for their practical application. [source] Radical Polymers for Organic Electronic Devices: A Radical Departure from Conjugated Polymers?ADVANCED MATERIALS, Issue 22 2009Kenichi Oyaizu Abstract Radical polymers are aliphatic or nonconjugated polymers bearing organic robust radicals as pendant groups per repeating unit. A large population of the radical redox sites allows the efficient redox gradient-driven electron transport through the polymer layer by outer-sphere self-exchange reactions in electrolyte solutions. The radical polymers are emerging as a new class of electroactive materials useful for various kinds of wet-type energy storage, transport, and conversion devices. Electric-field-driven charge transport by hopping between the densely populated radical sites is also a remarkable aspect of the radical polymers in the solid state, which leads to many dry-type devices such as organic memories, diodes, and switches. [source] Scanning Probe Microscopy: Electrical Scanning Probe Microscopy on Active Organic Electronic Devices (Adv. Mater.ADVANCED MATERIALS, Issue 1 20091/2009) The inside cover, drawn by Irene Wang, illustrates that electrical atomic force microscopy techniques can play an integral part in the research and development of organic electronic materials. On p. 19 Pingree, Reid, and Ginger highlight the use of scanning probe microscopy techniques in examining heterogeneities, defects, and various transport properties including injection, trapping, and generation/recombination in organic lightemitting diodes, thin-film transistors, and solar cells. [source] Electrical Scanning Probe Microscopy on Active Organic Electronic DevicesADVANCED MATERIALS, Issue 1 2009Liam S. C. Pingree Abstract Polymer- and small-molecule-based organic electronic devices are being developed for applications including electroluminescent displays, transistors, and solar cells due to the promise of low-cost manufacturing. It has become clear that these materials exhibit nanoscale heterogeneities in their optical and electrical properties that affect device performance, and that this nanoscale structure varies as a function of film processing and device-fabrication conditions. Thus, there is a need for high-resolution measurements that directly correlate both electronic and optical properties with local film structure in organic semiconductor films. In this article, we highlight the use of electrical scanning probe microscopy techniques, such as conductive atomic force microscopy (c-AFM), electrostatic force microscopy (EFM), scanning Kelvin probe microscopy (SKPM), and similar variants to elucidate charge injection/extraction, transport, trapping, and generation/recombination in organic devices. We discuss the use of these tools to probe device structures ranging from light-emitting diodes (LEDs) and thin-film transistors (TFT), to light-emitting electrochemical cells (LECs) and organic photovoltaics. [source] Multilayer Construction with Various Ceramic Films for Electronic Devices Fabricated by Aerosol DepositionINTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 6 2006Hironori Hatono Aerosol deposition (AD) is applicable as a fabrication technology for microstructures comprising different materials. We used this method for electronic devices that consist of ceramic films and metal electrodes. Various ceramic thick films (5,50 ,m thickness), for example, Al2O3, 2MgO·SiO2, and BaTiO3, were deposited on substrates using room-temperature aerosol deposition. The dielectric constant of BaTiO3 was 78 at 1 MHz. Multilayer constructions with ceramic films and copper electrodes were obtained using aerosol deposition and sputtering. During deposition, photoresist film masks were applied to produce patterns of ceramic films and connections between upper and lower electrodes through the ceramic films. [source] Air-Stable Polymer Electronic Devices,ADVANCED MATERIALS, Issue 18 2007K. Lee By introducing a titanium oxide (TiOx) layer between the active layer and the aluminum cathode in polymer-based electronic devices (see figure), devices with excellent air stability and with enhanced performance are demonstrated. The TiOx layer acts as a shielding and scavenging layer that prevents the intrusion of oxygen and humidity into the electronically active polymers, thereby improving the lifetime of unpackaged devices exposed to air by nearly two orders of magnitude. [source] Electromagnetic Interference of an Implantable Loop Recorder by Commonly Encountered Electronic DevicesPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 10 2000CAREL C. DE COCK De COCK, C.C., et al.: Electromagnetic Interference of an Implantable Loop Recorder by Commonly Encountered Electronic Devices. Electromagnetic interference of pacemaker systems has been well established and can lead to an inappropriate function of these devices. Recently, an implantable loop recorder (ILR) (REVEAL, Medtronic Inc.) has been introduced to evaluate the possible arrhythmic etiology of patients with recurrent syncope. We evaluated the interference of this device in two patients with implantable ILR and in three nonimplanted ILRs with four electromagnetic sources: cellular phones (GSMs), electronic article surveillance systems (EASs), metal detector gates (MDGs), and magnetic resonance imaging (MRI). The GSM did not affect appropriate function of the ILR whereas radiofrequency (RF) EAS could interfere with normal function in implanted and nonimplanted systems. The MDG had no influence on ILR function. The magnetic field induced by the MRI resulted in an irreversible error in one nonimplanted ILR. Therefore, although interference between electromagnetic sources and ILRs appears to be rare in our study, physicians should be aware of possible malfunctioning of these devices. [source] Ground-State Equilibrium Thermodynamics and Switching Kinetics of Bistable [2]Rotaxanes Switched in Solution, Polymer Gels, and Molecular Electronic DevicesCHEMISTRY - A EUROPEAN JOURNAL, Issue 1 2006Jang Wook Choi Abstract We report on the kinetics and ground-state thermodynamics associated with electrochemically driven molecular mechanical switching of three bistable [2]rotaxanes in acetonitrile solution, polymer electrolyte gels, and molecular-switch tunnel junctions (MSTJs). For all rotaxanes a ,-electron-deficient cyclobis(paraquat- p -phenylene) (CBPQT4+) ring component encircles one of two recognition sites within a dumbbell component. Two rotaxanes (RATTF4+ and RTTF4+) contain tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) recognition units, but different hydrophilic stoppers. For these rotaxanes, the CBPQT4+ ring encircles predominantly (>90,%) the TTF unit at equilibrium, and this equilibrium is relatively temperature independent. In the third rotaxane (RBPTTF4+), the TTF unit is replaced by a ,-extended analogue (a bispyrrolotetrathiafulvalene (BPTTF) unit), and the CBPQT4+ ring encircles almost equally both recognition sites at equilibrium. This equilibrium exhibits strong temperature dependence. These thermodynamic differences were rationalized by reference to binding constants obtained by isothermal titration calorimetry for the complexation of model guests by the CBPQT4+ host in acetonitrile. For all bistable rotaxanes, oxidation of the TTF (BPTTF) unit is accompanied by movement of the CBPQT4+ ring to the DNP site. Reduction back to TTF0 (BPTTF0) is followed by relaxation to the equilibrium distribution of translational isomers. The relaxation kinetics are strongly environmentally dependent, yet consistent with a single electromechanical-switching mechanism in acetonitrile, polymer electrolyte gels, and MSTJs. The ground-state equilibrium properties of all three bistable [2]rotaxanes were reflective of molecular structure in all environments. These results provide direct evidence for the control by molecular structure of the electronic properties exhibited by the MSTJs. [source] Modeling of coupled mass and heat transfer through venting membranes for automotive applicationsAICHE JOURNAL, Issue 2 2009Amine Barkallah Abstract Experimental and theoretical approaches based on a mathematical model, have been developed to study the evolution of environmental parameters (temperature, total pressure, relative humidity, and water vapor partial pressure) inside a housing of an electronic device with a window containing a macroporous membrane. The model was based on the coupling of mass and heat transfer taking into account the effects of polarization of concentration in boundary layers. Membranes have been characterized by mercury porosimetry, liquid entry pressure measurements, scanning electron microscopy, and gas permeation. Once the model was experimentally validated, it was applied to investigate the influence of membranes on heat and mass transfer and to study the impact of the boundary layers on the global mass transport. The results demonstrated the importance of the membrane choice and dimensions to get the best temperature regulation and avoid water condensation inside an automotive electronic control unit (ECU). © 2008 American Institute of Chemical Engineers AIChE J, 2009 [source] Monitoring adherence to beclomethasone in asthmatic children and adolescents through four different methodsALLERGY, Issue 10 2009N. S. Jentzsch Background:, Suboptimal adherence to inhaled steroids is a known problem in children and adolescents, even when medications are administered under parental supervision. This study aimed to verify the adherence rate to beclomethasone dipropionate (BDP) by four currently available methods. Methods:, In this concurrent cohort study, 102 randomly selected asthmatic children and adolescents aged 3,14 years were followed for 12 months. Adherence rate was assessed every 2 months by self and/or parent report, pharmacy dispensing data, electronic device (Doser®; Meditrack Products, Hudson, MA, USA) monitor, and canister weight. Results:, Mean adherence rates to BDP by self and/or parent report, pharmacy records, Doser, and canister weight were 97.9% (95% CI 88.0,98.6), 70.0% (95% CI 67.6,72.4), 51.5% (95% CI 48.3,54.6), and 46.3% (95% CI 44.1,48.4), respectively. Agreement analysis between (Doser) and canister weight revealed a weighted kappa equal to 0.76 (95% CI 0.65,0.87). Conclusions:, Adherence was a dynamic event and rates decreased progressively for all methods over the 12-month follow-up. Canister weight and electronic monitoring measures were more accurate than self/parent reports and pharmacy records. Rates obtained by these two methods were very close and statistical analysis also showed a substantial agreement between them. As measurements by canister weight are less costly compared with currently available electronic devices, it should be considered as an alternative method to assess adherence in both clinical research and practice. [source] Temporomandibular joint sound evaluation with an electronic device and clinical evaluationORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 2 2001R. A. Tanzilli Sound analysis to diagnose internal derangement has received much attention as an alternative to radiographic examination. The purpose of this study was to compare findings with an electronic device (sonography) and clinical examination to magnetic resonance imaging (MRI) of the temporomandibular joint (TMJ). Twenty-three symptomatic patients (46 joints) were evaluated for this study. All patients had jaw joint pain and one or more of the following findings; limitation of jaw opening, painful mandibular movement with or without clicking or crepitation. The presence or absence of joint sounds was evaluated clinically by palpation and auscultation and with sonography. If sounds were present (clicking or crepitation) on either examination the patient was considered positive for disc displacement for that examination. Two by two tables were constructed comparing sonography and clinical examination with MRI findings. The sensitivity of the sonogram was 84% and the specificity was 33% when compared with MRI findings. The sensitivity of the clinical examination was 70% and the specificity was 40% when compared with MRI findings. This study suggests that clinical and sonographic examination has a high sensitivity (low false negative examinations) but low specificity (high false positive examinations). [source] Methods: Measuring physical activity in public open space , an electronic device versus direct observationAUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH, Issue 1 2002Andrew J. Milat Objective: To evaluate the practicality and validity of using infra-red beam counters (IRBCs) to measure walking path use and overall park use. Method: Direct observation was carried out simultaneously with IRBC data collection in five parks on seven non-consecutive days during February-March in 1998 and on matched days in 1999. A second validation study was undertaken in one park in October 1999. Results: The IRBC over-estimated the observed number of people using walking paths by 14% to 78%. When assessed by path volume, the difference between the IRBC and observer ranged from 10% under-estimation to 16% over-estimation. In a more rigorous evaluation of path volume the IRBC under-estimated the observed count by 20%. The extent to which the IRBC equated with the number of observed park users varied from 69% underestimation to no difference. Conclusion: IRBCs are not appropriate for measuring the number of people engaging in physical activity in parks. Implications: IRBCs cannot replace direct observation for the collection of valid data on physical activity participation in parks. Further research is needed to determine settings in which electronic devices such as IRBCs may provide valid data on physical activity participation. [source] Fabrication and Properties of Conducting Polypyrrole/SWNT-PABS Composite Films and NanotubesELECTROANALYSIS, Issue 11 2006Abstract We report the electropolymerization and characterization of polypyrrole films doped with poly(m-aminobenzene sulfonic acid (PABS) functionalized single-walled nanotubes (SWNT) (PPy/SWNT-PABS). The negatively charged water-soluble SWNT-PABS served as anionic dopant during the electropolymerization to synthesize PPy/SWNT-PABS composite films. The synthetic, morphological and electrical properties of PPy/SWNT-PABS films and chloride doped polypyrrole (PPy/Cl) films were compared. Characterization was performed by cyclic voltammetry, atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy. SEM and AFM images revealed that the incorporation of SWNT-PABS significantly altered the morphology of the PPy. Cyclic voltammetry showed improved electrochemical properties of PPy/SWNT-PABS films as compared to PPy/Cl films. Raman Spectroscopy confirmed the presence of SWNT-PABS within composite films. Field effect transistor (FET) and electrical characterization studies show that the incorporation of the SWNT-PABS increased the electronic performance of PPy/SWNT-PABS films when compared to PPy/Cl films. Finally, we fabricated PPy/SWNT-PABS nanotubes which may lead to potential applications to sensors and other electronic devices. [source] A parallel multigrid solver for high-frequency electromagnetic field analyses with small-scale PC clusterELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 9 2008Kuniaki Yosui Abstract Finite element analyses of electromagnetic fields are commonly used for designing various electronic devices. The scale of the analyses becomes larger and larger, therefore, a fast linear solver is needed to solve linear equations arising from the finite element method. Since a multigrid solver is the fastest linear solver for these problems, parallelization of a multigrid solver is quite a useful approach. From the viewpoint of industrial applications, an effective usage of a small-scale PC cluster is important due to initial cost for introducing parallel computers. In this paper, a distributed parallel multigrid solver for a small-scale PC cluster is developed. In high-frequency electromagnetic analyses, a special block Gauss, Seidel smoother is used for the multigrid solver instead of general smoothers such as a Gauss, Seidel or Jacobi smoother in order to improve the convergence rate. The block multicolor ordering technique is applied to parallelize the smoother. A numerical example shows that a 3.7-fold speed-up in computational time and a 3.0-fold increase in the scale of the analysis were attained when the number of CPUs was increased from one to five. © 2009 Wiley Periodicals, Inc. Electron Comm Jpn, 91(9): 28, 36, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecj.10160 [source] C60 Nanostructures for Applications in Information Technology,ADVANCED ENGINEERING MATERIALS, Issue 4 2009Oliver Senftleben Carbon nanostructures,such as nanotubes, fullerenes, or graphene sheets,are studied widely in search of future applications in electronic devices. In our work, we demonstrate the possibility of embedding C60 fullerene molecules into a crystalline silicon matrix to form highly confined carbon- , -layers as well as into an amorphous SiO2 gate stack for possible application as a charge storage device. [source] Physical model of the interference immunity of electronic devices and conclusions concerning their testing and operating characteristicsEUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 3 2000H. Bauer Switching and fault processes in power-supply systems cause pulse-shaped disturbances which may stress electronic devices of protection and control systems. For test purposes such disturbances can be simulated. But despite of the constant test conditions the reaction of the device on the disturbance can vary in a certain range. Assuming similar internal structures of protection and control devices the coupling path and the effects of the disturbance are described. The variation in device reaction due to the disturbance is explained on the basis of different models which imitate the impact of the disturbances especially on the logical part of the circuit. By applying sensors with constant threshold the effectiveness (function) of several EMC measures can be evaluated independently from the reaction of the special device. [source] 2-Dimensional code design for an optical CDMA system with a parallel interference cancellation receiverEUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 7 2007Mikaël Morelle The objective of this paper is to design a two-Dimensional Optical Code Division Multiple Access system (2D-OCDMA) for application in access networks, with coding and decoding functions performed by electronic devices. We present a new construction method of Multi-Wavelength Optical Orthogonal Codes (MWOOC), which permits a high flexibility in the code parameters choice. This work evaluates in the noiseless case, the MWOOC potentialities for two receiver structures: a Conventional Correlation Receiver (CCR) and a Parallel Interference Cancellation receiver (PIC). We show that with a PIC receiver, it is possible to design two-Dimensional codes that respect the access specifications. Copyright © 2007 John Wiley & Sons, Ltd. [source] Inkjet-Printed Single-Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating PolymersADVANCED FUNCTIONAL MATERIALS, Issue 19 2010Jung Ah Lim Fabrication of organic field-effect transistors (OFETs) using a high-throughput printing process has garnered tremendous interest for realizing low-cost and large-area flexible electronic devices. Printing of organic semiconductors for active layer of transistor is one of the most critical steps for achieving this goal. The charge carrier transport behavior in this layer, dictated by the crystalline microstructure and molecular orientations of the organic semiconductor, determines the transistor performance. Here, it is demonstrated that an inkjet-printed single-droplet of a semiconducting/insulating polymer blend holds substantial promise as a means for implementing direct-write fabrication of organic transistors. Control of the solubility of the semiconducting component in a blend solution can yield an inkjet-printed single-droplet blend film characterized by a semiconductor nanowire network embedded in an insulating polymer matrix. The inkjet-printed blend films having this unique structure provide effective pathways for charge carrier transport through semiconductor nanowires, as well as significantly improve the on-off current ratio and the environmental stability of the printed transistors. [source] Restoration of Conductivity with TTF-TCNQ Charge-Transfer SaltsADVANCED FUNCTIONAL MATERIALS, Issue 11 2010Susan A. Odom Abstract The formation of the conductive TTF-TCNQ (tetrathiafulvalene,tetracyanoquinodimethane) charge-transfer salt via rupture of microencapsulated solutions of its individual components is reported. Solutions of TTF and TCNQ in various solvents are separately incorporated into poly(urea-formaldehyde) core,shell microcapsules. Rupture of a mixture of TTF-containing microcapsules and TCNQ-containing microcapsules results in the formation of the crystalline salt, as verified by FTIR spectroscopy and powder X-ray diffraction. Preliminary measurements demonstrate the partial restoration of conductivity of severed gold electrodes in the presence of TTF-TCNQ derived in situ. This is the first microcapsule system for the restoration of conductivity in mechanically damaged electronic devices in which the repairing agent is not conductive until its release. [source] Solution Processable Fluorenyl Hexa- peri -hexabenzocoronenes in Organic Field-Effect Transistors and Solar CellsADVANCED FUNCTIONAL MATERIALS, Issue 6 2010Wallace W. H. Wong Abstract The organization of organic semiconductor molecules in the active layer of organic electronic devices has important consequences to overall device performance. This is due to the fact that molecular organization directly affects charge carrier mobility of the material. Organic field-effect transistor (OFET) performance is driven by high charge carrier mobility while bulk heterojunction (BHJ) solar cells require balanced hole and electron transport. By investigating the properties and device performance of three structural variations of the fluorenyl hexa- peri -hexabenzocoronene (FHBC) material, the importance of molecular organization to device performance was highlighted. It is clear from 1H NMR and 2D wide-angle X-ray scattering (2D WAXS) experiments that the sterically demanding 9,9-dioctylfluorene groups are preventing ,,, intermolecular contact in the hexakis-substituted FHBC 4. For bis-substituted FHBC compounds 5 and 6, ,,, intermolecular contact was observed in solution and hexagonal columnar ordering was observed in solid state. Furthermore, in atomic force microscopy (AFM) experiments, nanoscale phase separation was observed in thin films of FHBC and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) blends. The differences in molecular and bulk structural features were found to correlate with OFET and BHJ solar cell performance. Poor OFET and BHJ solar cells devices were obtained for FHBC compound 4 while compounds 5 and 6 gave excellent devices. In particular, the field-effect mobility of FHBC 6, deposited by spin-casting, reached 2.8,×,10,3,cm2 V,1 s and a power conversion efficiency of 1.5% was recorded for the BHJ solar cell containing FHBC 6 and PC61BM. [source] Polymer Field-Effect Transistors Fabricated by the Sequential Gravure Printing of Polythiophene, Two Insulator Layers, and a Metal Ink GateADVANCED FUNCTIONAL MATERIALS, Issue 2 2010Monika M. Voigt Abstract The mass production technique of gravure contact printing is used to fabricate state-of-the art polymer field-effect transistors (FETs). Using plastic substrates with prepatterned indium tin oxide source and drain contacts as required for display applications, four different layers are sequentially gravure-printed: the semiconductor poly(3-hexylthiophene-2,5-diyl) (P3HT), two insulator layers, and an Ag gate. A crosslinkable insulator and an Ag ink are developed which are both printable and highly robust. Printing in ambient and using this bottom-contact/top-gate geometry, an on/off ratio of >104 and a mobility of 0.04,cm2 V,1 s,1 are achieved. This rivals the best top-gate polymer FETs fabricated with these materials. Printing using low concentration, low viscosity ink formulations, and different P3HT molecular weights is demonstrated. The printing speed of 40,m min,1 on a flexible polymer substrate demonstrates that very high-volume, reel-to-reel production of organic electronic devices is possible. [source] Printable Electronics: Foldable Printed Circuit Boards on Paper Substrates (Adv. Funct.ADVANCED FUNCTIONAL MATERIALS, Issue 1 2010Mater. Lightweight and flexible printed circuit boards (PCBs) have been produced by micro-patterning metal on paper substrates, as reported by Siegel et al. on page 28. Paper-based electronic devices can be folded and creased repeatedly, shaped to form three-dimensional structures, integrated with paper-based microfluidic devices, and disposed of by flame (as shown in the cover image). [source] Intrinsic Surface Dipoles Control the Energy Levels of Conjugated PolymersADVANCED FUNCTIONAL MATERIALS, Issue 24 2009Georg Heimel Abstract Conjugated polymers are an important class of materials for organic electronics applications. There, the relative alignment of the electronic energy levels at ubiquitous organic/(in)organic interfaces is known to crucially impact device performance. On the prototypical example of poly(3-hexylthiophene) and a fluorinated derivative, the energies of the ionization and affinity levels of , -conjugated polymers are revealed to critically depend on the orientation of the polymer backbones with respect to such interfaces. Based on extensive first-principles calculations, an intuitive electrostatic model is developed that quantitatively traces these observations back to intrinsic intramolecular surface dipoles arising from the , -electron system and intramolecular polar bonds. The results shed new light on the working principles of organic electronic devices and suggest novel strategies for materials design. [source] Nanoscale Conducting Channels at the Surface of Organic Semiconductors Formed by Decoration of Molecular Steps with Self-Assembled MoleculesADVANCED FUNCTIONAL MATERIALS, Issue 23 2009Bumsu Lee Abstract Under certain conditions, self-assembling molecules preferentially bind to molecular steps at the surface of crystalline organic semiconductors, inducing a strong local doping effect. This creates macroscopically long conducting paths of nanoscale width (a single crystalline analogue of organic nanowires) that can span distances of up to 1,cm between electrical contacts. The observed effect of molecular step decoration opens intriguing possibilities for visualization, passivation, and selective doping of surface and interfacial defects in organic electronic devices and provides a novel system for research on nanoscale charge transport in organic semiconductors. In addition, this effect sheds light on the microscopic origin of nucleation and growth of self-assembled monolayers at organic surfaces. It can also have implications in electronic patterning, nanoscale chemical sensors, integrated interconnects and charge-transfer interfaces in organic transistors and solar cells. [source] Selective Electrochemical Etching of Single-Walled Carbon NanotubesADVANCED FUNCTIONAL MATERIALS, Issue 22 2009Dacheng Wei Abstract Single-walled carbon nanotubes (SWNTs) are a promising material for future nanotechnology. However, their applications are still limited in success because of the co-existence of metallic SWNTs and semiconducting SWNTs produced samples. Here, electrochemical etching, which shows both diameter and electrical selectivity, is demonstrated to remove SWNTs. With the aid of a back-gate electric field, selective removal of metallic SWNTs is realized, resulting in high-performance SWNT field-effect transistors with pure semiconducting SWNT channels. Moreover, electrochemical etching is realized on a selective area. These findings would be valuable for research and the application of SWNTs in electrochemistry and in electronic devices. [source] Diamond Transistor Array for Extracellular Recording From Electrogenic CellsADVANCED FUNCTIONAL MATERIALS, Issue 18 2009Markus Dankerl Abstract The transduction of electric signals from cells to electronic devices is mandatory for medical applications such as neuroprostheses and fundamental research on communication in neuronal networks. Here, the use of diamond with its advantages for biological applications as a new material for biohybrid devices for the detection of cell signals is investigated. Using the surface conductivity of hydrogen-terminated single-crystalline diamond substrates, arrays of solution-gate field-effect transistors were fabricated. The characterization of the transistors reveals a good stability in electrolyte solutions for at least 7 days. On these devices, cardiomyocyte-like HL-1 cells as well as human embryonic kidney cells (HEK293), which were stably transfected with potassium channels, are cultured. Both types of cells show healthy growth and good adhesion to the substrate. The diamond transistors are used to detect electrical signals from both types of cells by recording the extracellular potential. For the HL-1 cells, the shape of action potentials can be resolved and the propagation of the signal across the cell layer is visible. Potassium currents of HEK293 cells are activated with the patch-clamp technique in voltage-clamp mode and simultaneously measured with the field-effect transistors. The ion sensitivity of the diamond surface enables the detection of released potassium ions accumulated in the cleft between transistor and cell. [source] Rich Phase Behavior in a Supramolecular Conducting Material Derived from an OrganogelatorADVANCED FUNCTIONAL MATERIALS, Issue 6 2009Josep Puigmartí-Luis Abstract Organic conducting fiber-like materials hold great promise for the development of nanowires that can act as connections in miniature electronic devices, as an alternative to inorganic nanometer scale structures. This article presents a conducting organic tetrathiafulvalene-based supramolecular material which possesses a rich phase behavior with different packing of the molecules in the different forms, evidenced by electron spin resonance (ESR) spectroscopy. The distinct phases of conducting nanofibers can be easily fabricated through the temperature control of their preparation process from a xerogel by doping with iodine vapors. A total of four conducting phases have been identified conclusively using ESR spectroscopy as the key analytical tool. Three of the phases show a good long-term stability and areas in which the I,V curves have ohmic behavior when studied by current sensing (conducting) AFM. They offer promise for applications where electrical nanometer scale connections are required. [source] |