Electromagnetic Scattering (electromagnetic + scattering)

Distribution by Scientific Domains

Terms modified by Electromagnetic Scattering

  • electromagnetic scattering problem

  • Selected Abstracts


    Flexible GMRES-FFT method for fast matrix solution: application to 3D dielectric bodies electromagnetic scattering

    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 6 2004
    R. S. Chen
    Abstract In this paper, the electromagnetic wave scattering is analysed by the efficient Krylov subspace iterative fast Fourier transform (FFT) technique in terms of the electric field integral equation (EFIE) for a dielectric body of general shape, inhomogeneity, and anisotropy. However, when the permittivity of the scatter becomes large, the convergence rate of Krylov subspace iterative methods slow down. Therefore, the inner,outer flexible generalized minimum residual method (FGMRES) is used to accelerate the iteration. As a result, nearly 10 times convergence improvement is achieved for high permittivity cases. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Electromagnetic metamorphosis: Reshaping scatterers via conformal anisotropic metamaterial coatings

    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 10 2007
    Ozlem Ozgun
    Abstract We introduce a new technique (in the context of time-harmonic electromagnetic scattering), which renders an object (or scatterer) to be perceived as if it has a different shape, irrespective of the location of the observer. This is achieved through the usage of an anisotropic metamaterial layer, which is designed as conformal to the surface of the scatterer by employing the concept of coordinate transformation. We report some numerical results for finite element simulations of two-dimensional anisotropic metamaterial coatings. © 2007 Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 2386,2392, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.22784 [source]


    Application of the high-order symplectic FDTD scheme to the curved three-dimensional perfectly conducting objects

    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 4 2007
    Wei Sha
    Abstract A high-order symplectic finite-difference time-domain (SFDTD) scheme using the diagonal split-cell model is presented to analyze electromagnetic scattering of the curved three-dimensional perfectly conducting objects. On the one hand, for the undistorted cells, the fourth-order accurate spatial difference is employed. On the other hand, for the completely distorted cells, the treatment of the curved surfaces is based on the diagonal split-cell model. Finally, for the partially distorted cells, the interpolation strategy is proposed to keep the field components continuous. The numerical experiments suggest that the diagonal SFDTD scheme can obtain more accurate results than both the staircased SFDTD scheme and the traditional diagonal FDTD method. Furthermore, in view of the high numerical stability, the improved symplectic scheme does not need to decrease time increment to comply with the stability criterion. © 2007 Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 931,934, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.22306 [source]


    Surface integral methods for high-frequency electromagnetic scattering

    PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2007
    M. Ganesh
    Surface integral equation based methods are advantageous for simulation of electromagnetic waves scattered by three dimensional obstacles, because they efficiently reduce the dimension of the problem and are robust for high-frequency problems. However, the cost of setting up the associated discretized dense linear systems is prohibitive due to evaluation of highly oscillatory magnetic and electric dipole surface integral operators using standard cubatures. The computational complexity of evaluating such integrals depends on the incident wave frequency, and the size and shape of the obstacles. In this work we discuss a surface integral reformulation of the scattering problem that involves evaluation of surface integrals with a highly oscillatory physical density, and discuss methods for efficient evaluation of such integrals for a class of smooth three dimensional scatterers whose diameter is a large multiple of the incident wavelength. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    GPR microwave tomography for diagnostic analysis of archaeological sites: the case of a highway construction in Pontecagnano (Southern Italy)

    ARCHAEOLOGICAL PROSPECTION, Issue 3 2009
    R. Castaldo
    Abstract Interpretation of ground-penetrating radar (GPR) data usually involves data processing similar to that used for seismic data analysis, including also migration techniques. Alternatively, in the past few years, microwave tomographic approaches exploiting more accurate models of the electromagnetic scattering have gained interest, owing to their capability of providing accurate results and stable images. Within this framework, this paper deals with the application of a microwave tomography approach, based on the Born Approximation and working in the frequency domain. The case study is a survey performed during the realization of the third lane of the most important highway in southern Italy (the Salerno-Reggio Calabria, near Pontecagnano, Italy). It is shown that such an inversion approach produces well-focused images, from which buried structures can be more easily identified by comparison to traditional radar images. Moreover, the visualization of the reconstruction results is further enhanced through a three-dimensional volumetric rendering of the surveyed region, simply achieved by staggering the reconstructed GPR two-dimensional profiles. By means of this rendering it is possible to follow the spatial continuity of the buried structures in the subsurface thus obtaining a very effective geometrical characterization. The results are very useful in our case where, due to important civil engineering works, a fast diagnosis of the archaeological situation was needed. The quality of our GPR data modelling was confirmed by a test excavation, where a corner of a building and the eastern part of another house, with its courtyard, were found at the depth and horizontal position suggested by our interpretation. Copyright © 2009 John Wiley & Sons, Ltd. [source]