Home About us Contact | |||
Electrokinetic Injection (electrokinetic + injection)
Selected AbstractsSensitive analysis of donepezil in plasma by capillary electrophoresis combining on-column field-amplified sample stacking and its application in Alzheimer's disease,ELECTROPHORESIS, Issue 17 2008Hsin-Hua Yeh Abstract Field-amplified sample stacking (FASS) in capillary electrophoresis (CE) was used to determine the concentration of donepezil, an acetylcholinesterase inhibitor, in human plasma. A sample pretreatment by liquid,liquid extraction with isopropanol/n -hexane (v/v 3:97) and subsequent quantification by FASS-CE was used. Before sample loading, a water plug (0.5,psi, 6,s) was injected to permit FASS. Electrokinetic injection (7,kV, 90,s) was used to introduce sample cations. The separation condition for donepezil was performed in electrolyte solutions containing Tris buffer (60,mM, pH 4.0) with sodium octanesulfonate 40,mM and 0.01% polyvinyl alcohol as a dynamic coating to reduce analytes' interaction with capillary wall. The separation was performed at 28,kV and detected at 200,nm. Using atenolol as an internal standard, the linear ranges of the method for the determination of donepezil in human plasma were over a range of 1,50,ng/mL. The limit of detection was 0.1,ng/mL (S/N=3, sampling 90,s at 7,kV). One female volunteer (54 years old) was orally administered a single dose of 10,mg donepezil (Aricept®, Eisai), and blood samples were drawn over a 60,h period for pharmacokinetic study. The method was also applied successfully to monitor donepezil in sixteen Alzheimer's disease patients' plasmas. [source] Rapid and sensitive determination of strychnine and brucine in human urine by capillary electrophoresis with field-amplified sample stackingBIOMEDICAL CHROMATOGRAPHY, Issue 2 2010Junmei Li Abstract A simple, rapid, sensitive and low-cost method using capillary electrophoresis (CE) coupled with field-amplified sample stacking (FASS) has been developed and validated for the simultaneous determination of strychnine and brucine residues in human urine. Before sample loading, a water plug (3.5 kPa, 3,s) was injected to contain sample cations and to permit FASS. Electrokinetic injection at a voltage (20 kV, 25,s) was then used to introduce cations. Separation was performed using 20,mM acetate buffer (pH 3.8) with an applied voltage of 20 kV. The calibration curves were linear over a range of 8.00,2.56 , 102,ng/mL (r = 0.9995) for strychnine and 10.0,3.20 × 102,ng/mL (r = 0.9999) for brucine. Extraction recoveries in urine were greater than 79.6 and 82.8% for strychnine and brucine, respectively, with an RSD of less than 4.9%. The detection limits (signal-to-noise ratio 3) for strychnine and brucine were 2.00 and 2.50,ng/mL, respectively. A urine sample from one healthy female volunteer (26 years old, 50,kg) was pretreated and analyzed. Strychnine and brucine levels in urine could be detected 24,h after administration. On these grounds, this method was feasible for application to preliminary screening of trace levels of abused drugs for both doping control and forensic analysis. Copyright © 2009 John Wiley & Sons, Ltd. [source] Analysis of sub-ppb levels of Fe(II), Co(II), and Ni(II) by electrokinetic supercharging preconcentration, CZE separation, and in-capillary derivatizationELECTROPHORESIS, Issue 20 2007Marek Urbanek Abstract The analysis of sub-ppb levels of Fe(II), Co(II), and Ni(II) in heat exchanger fluids of nuclear power plants is needed to monitor corrosion. A method involving preconcentration with electrokinetic supercharging (electrokinetic injection with transient ITP), CZE separation, and in-capillary derivatization with ortho -phenanthroline (o -Phe) for direct UV detection was thus developed. First, a multizone BGE was loaded into the capillary by successive hydrodynamic introduction of zones of (i) o -Phe-containing BGE, (ii) BGE for the zonal separation, and (iii) ammonium-based leading electrolyte. Metal cations were electrokinetically injected and stacked at the capillary inlet behind this last leading zone. Finally, a terminating electrolyte zone was hydrodynamically introduced. When a constant voltage was applied, metal ions kept on concentrating isotachophoretically, then separated in CZE mode, were complexed by migrating through an o -Phe zone, and finally detected by direct absorbance. To detect extremely thin peaks, it was attempted for the first time to focus the derivatization reagent by inducing a second transient ITP, before labeling analytes, already separated in CZE mode. With this arrangement, LODs were about 30,ppt in pure water. In heat exchanger fluid matrices containing 1000,ppm bore and 2,ppm lithium, only Fe(II) cation was detected among the three cations of interest at the 1,ppb level using the present method, and its LOD was about ten times higher, due to the lower loading rate during electrokinetic injection. [source] Enhanced pH-mediated stacking of anions for CE incorporating a dynamic pH junctionELECTROPHORESIS, Issue 20 2007Stacy D. Arnett Abstract A technique has been developed to enhance analyte focusing for CE for the analysis of physiological samples. High-ionic-strength samples are titrated to low-ionic-strength on-line using pH-mediated sample stacking in conjunction with a dynamic pH junction. This method concentrates analytes by reducing their electrophoretic mobility during field-amplification. Parameters responsible for enhanced focusing were investigated, and an enhanced pH-mediated stacking method was optimized for anionic nucleosides. The process results in ultra-narrow peak widths, for example, 0.28,s for thymidine with a 10,min analysis time. Peak width and resolution with the enhanced stacking method were also compared to normal base stacking and electrokinetic injection. With this technique, mass-loading capacity can be increased without degradation in peak shape and resolution is dramatically improved. [source] Simultaneous enantioseparation and sensitivity enhancement of basic drugs using large-volume sample stackingELECTROPHORESIS, Issue 19 2007Nerissa L. Deñola Abstract Simultaneous enantioseparation with sensitive detection of four basic drugs, namely methoxamine, metaproterenol, terbutaline and carvedilol, using a 20-,m ID capillary with native ,-CD as the chiral selector was demonstrated by the large-volume sample stacking method. The procedure included conventional sample loading either hydrodynamically or electrokinetically at longer injection times without polarity switching and EOF manipulation. In comparison to conventional injections, depending on the analyte, about several hundred- and a thousand-fold sensitivity enhancement was achieved with the hydrodynamic and the electrokinetic injections, respectively. The simple method developed was applied to the analysis of racemic analytes in serum samples and better recovery was achieved using hydrodynamic injection than electrokinetic injection. [source] Poly(methacrylic acid-ethylene glycol dimethacrylate) monolith in-tube solid-phase microextraction applied to simultaneous analysis of some amphetamine derivatives in urine by capillary zone electrophoresisELECTROPHORESIS, Issue 16 2005Fang Wei Abstract A method based on in-tube solid-phase microextraction and capillary zone electrophoresis (CZE) was proposed for simultaneously determining four amphetamines (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, and 3,4-methylenedioxymethamphetamine) in urine. A poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column, which can provide sufficient extraction efficiency, was introduced for the extraction of amphetamines from urine samples. The hydrophobic main chains and acidic pendant groups of the monolithic column make it a superior material for extraction of basic analytes from aqueous matrix. After extraction, the samples were analyzed by CZE. The best separation was achieved using a buffer composed of 0.1,M disodium hydrogen phosphate (adjusted to pH,4.5 with 1,M hydrochloric acid) and 20% methanol v/v, with a temperature and voltage of 25°C and 20,kV, respectively. By applying electrokinetic injection with field-amplified sample stacking, detection limits of 25,34,µg/L were achieved. Excellent method of reproducibility was found over a linear range of 0.1,5,mg/L. Determination of these analytes from abusers' urine sample was also demonstrated. [source] Quantitation of talinolol and other ,-blockers by capillary electrophoresis for in vitro drug absorption studiesELECTROPHORESIS, Issue 15 2003Bilal Awadallah Abstract A capillary zone electrophoresis method is described for the enantioseparation of talinolol using heptakis(2,3-diacetyl-6-sulfo)-,-cyclodextrin (HDAS-,-CD) as a chiral selector. After liquid-liquid extraction of talinolol from physiological solution, electrokinetic injection was employed to improve the sensitivity. The use of a coated capillary was necessary to achieve stable and reproducible enantioseparations. A baseline separation of the talinolol enantiomers was achieved in less than 10 min using 100 mM phosphate solution as background electrolyte and pH 3.5, at the presence of 3.0 mM HDAS-,-CD and at 20°C. In addition, this analytical condition proved to be useful for the enantioseparation of a number of other ,-blocking agents such as alprenolol, atenolol, bisoprolol, celiprolol, metipranolol, oxprenolol, and sotalol. For determing talinolol, the method could be validated in terms of precision, accuracy and linearity, and was found to be suitable in determination of talinolol enantiomers in highly diluted samples obtained from in vitro experiments. [source] Dynamic analyte introduction and focusing in plastic microfluidic devices for proteomic analysisELECTROPHORESIS, Issue 1-2 2003Yan Li Abstract Isoelectric focusing (IEF) separations, in general, involve the use of the entire channel filled with a solution mixture containing protein/peptide analytes and carrier ampholytes for the creation of a pH gradient. Thus, the preparative capabilities of IEF are inherently greater than most microfluidics-based electrokinetic separation techniques. To further increase sample loading and therefore the concentrations of focused analytes, a dynamic approach, which is based on electrokinetic injection of proteins/peptides from solution reservoirs, is demonstrated in this study. The proteins/peptides continuously migrate into the plastic microchannel and encounter a pH gradient established by carrier ampholytes originally present in the channel for focusing and separation. Dynamic sample introduction and analyte focusing in plastic microfluidic devices can be directly controlled by various electrokinetic conditions, including the injection time and the applied electric field strength. Differences in the sample loading are contributed by electrokinetic injection bias and are affected by the individual analyte's electrophoretic mobility. Under the influence of 30 min electrokinetic injection at constant electric field strength of 500 V/cm, the sample loading is enhanced by approximately 10,100 fold in comparison with conventional IEF. [source] Field-amplified on-line sample stacking for determination of carnosine-related peptides by capillary electrophoresisJOURNAL OF SEPARATION SCIENCE, JSS, Issue 7 2006Ying Huang Abstract An on-line sample stacking method, namely field-amplified sample injection, has been developed for the separation and determination of carnosine, anserine, and homocarnosine by capillary electrophoresis. Using electrokinetic injection, about 130- to 160-fold improvement of sensitivity was achieved without loss of separation efficiency when compared to conventional sample injection. For conventional injection, the samples were dissolved in running buffer and then hydrodynamically injected for 10 s (3.45 kPa). Various parameters affecting separation and sample stacking were optimized. Under optimum conditions, linear responses were obtained over two orders of magnitude and the detection limits (defined as S/N = 3) of carnosine, anserine, and homocarnosine were 1.5×10,8 to 1.6×10,8 mol/L. [source] Study of electromigration effects on a pH boundary during the on-line electrokinetic preconcentration by capillary electrophoresisELECTROPHORESIS, Issue 16 2010ina Vítková Abstract A contribution to the description of electrokinetic effects on the pH boundary formed by sodium borate pH 9.5 and sodium phosphate pH 2.5 electrolytes for on-line preconcentration of weak acids is presented in this article. Simulations of electrokinetic injections together with experimental studies using contactless conductivity detection verified that the preconcentration is induced mainly by dissociation changes of analytes on the pH boundary and transient ITP state. Moreover, a study of the addition of organic solvent to the injection electrolyte was performed with impressive results. Subnanomolar LODs of hydroxybenzoic acids were achieved with 80% of methanol in the injection electrolyte which represents more than 70,000-fold preconcentration in comparison with classical CZE method. [source] Simultaneous enantioseparation and sensitivity enhancement of basic drugs using large-volume sample stackingELECTROPHORESIS, Issue 19 2007Nerissa L. Deñola Abstract Simultaneous enantioseparation with sensitive detection of four basic drugs, namely methoxamine, metaproterenol, terbutaline and carvedilol, using a 20-,m ID capillary with native ,-CD as the chiral selector was demonstrated by the large-volume sample stacking method. The procedure included conventional sample loading either hydrodynamically or electrokinetically at longer injection times without polarity switching and EOF manipulation. In comparison to conventional injections, depending on the analyte, about several hundred- and a thousand-fold sensitivity enhancement was achieved with the hydrodynamic and the electrokinetic injections, respectively. The simple method developed was applied to the analysis of racemic analytes in serum samples and better recovery was achieved using hydrodynamic injection than electrokinetic injection. [source] |