Home About us Contact | |||
Electrochemical Sensors (electrochemical + sensor)
Selected AbstractsTape Casting of Graphite Material: A New Electrochemical SensorELECTROANALYSIS, Issue 16 2006M. Chicharro Abstract Tape casting is a feasible method for preparing ceramic tapes with different electrical and magnetic properties for multilayer ceramic devices. This paper describes the tape casting process for the preparation of a new kind of self-standing carbon electrodes (SSCE) using different ratios of graphite and the organic additives generally used in the non-aqueous tape casting process. [source] A Novel Al(III)-Selective Electrochemical Sensor Based on N,N,-Bis(salicylidene)-1,2-phenylenediamine ComplexesELECTROANALYSIS, Issue 16 2006B. Gholivand Abstract A polyvinylchloride membrane sensor based on N,N,-bis(salecylidene)-1,2-phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+ -selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10,7,3.0×10,2,M), with a detection limit of 6.0×10,7,M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2,4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples. [source] Electrochemical Sensor with Record Performance Characteristics.CHEMINFORM, Issue 49 2007Arkady A. Karyakin Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source] Toxicity Assessment of Cyanide and Tetramethylene Disulfotetramine (Tetramine) Using Luminescent Bacteria Vibrio-qinghaiensis and PbO2 Electrochemical SensorCHINESE JOURNAL OF CHEMISTRY, Issue 2 2007Wei Liu Abstract The toxicities of cyanide and tetramethylene disulfotetramine (tetramine) were evaluated by two methods of luminescent bacteria and PbO2 electrochemical sensor. Vibrio-qinghaiensis, a kind of luminescent bacteria, can produce bioluminescence and the bioluminescence was decreased with the addition of toxicants. The toxicities of cyanide and tetramine were expressed as 10 min-EC50 value, which was the concentration of chemical that reduces the light output by 50% after contact for 10 min. Nano PbO2 modified electrode, a rapid toxicity determination method was also described in this work. By the PbO2 modified electrode, the current responses of Escherichia coli (E. coli) were changed with the addition of toxicants. The value of 10 min-EC50 was also provided with the PbO2 electrochemical sensor. Compared with the 10 min-EC50 and detection limits (38.38 and 0.60 µg/mL for cyanide, 0.24 and 0.02 µg/mL for tetramine) with luminescent bacteria, the PbO2 sensor provided a simple and convenient method with lower 10 min-EC50 and detection limits (26.37 and 0.52 µg/mL for cyanide, 0.21 and 0.01 µg/mL for tetramine) and fast response time. [source] Electronic Tongues Employing Electrochemical SensorsELECTROANALYSIS, Issue 14 2010Manel del, Valle Abstract This review presents recent advances concerning work with electronic tongues employing electroanalytical sensors. This new concept in the electroanalysis sensor field entails the use of chemical sensor arrays coupled with chemometric processing tools, as a mean to improve sensors performance. The revision is organized according to the electroanalytical technique used for transduction, namely: potentiometry, voltammetry/amperometry or electrochemical impedance. The significant use of biosensors, mainly enzyme-based is also presented. Salient applications in real problem solving using electrochemical electronic tongues are commented. [source] Graphene Based Electrochemical Sensors and Biosensors: A ReviewELECTROANALYSIS, Issue 10 2010Yuyan Shao Abstract Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed. [source] Chemical Reactivity of Polypyrrole and Its Relevance to Polypyrrole Based Electrochemical SensorsELECTROANALYSIS, Issue 16 2006Krzysztof MaksymiukArticle first published online: 26 JUL 200 Abstract One of the most frequently used conducting polymers, polypyrrole, can take part in chemical processes with typical components of ambient media: oxygen, acids, bases, redox reactants, water, and organic vapors; it can also incorporate nonreactive ions and surfactants from solutions. The influence of such processes on changes of the polymer structure, composition and on possible degradation is analyzed. The benefits and disadvantages of such processes for analytical characteristic of polypyrrole based electrochemical sensors are considered. This discussion is focused on potentiometric ion sensors, where polypyrrole is either a receptor membrane or an ion-to-electron transducer placed between a solid state electrode support and a typical ion-selective membrane. [source] Application of Nanoparticles in Electrochemical Sensors and BiosensorsELECTROANALYSIS, Issue 4 2006Xiliang Luo Abstract The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. Many kinds of nanoparticles, such as metal, oxide and semiconductor nanoparticles have been used for constructing electrochemical sensors and biosensors, and these nanoparticles play different roles in different sensing systems. The important functions provided by nanoparticles include the immobilization of biomolecules, the catalysis of electrochemical reactions, the enhancement of electron transfer between electrode surfaces and proteins, labeling of biomolecules and even acting as reactant. This minireview addresses recent advances in nanoparticle-based electrochemical sensors and biosensors, and summarizes the main functions of nanoparticles in these sensor systems. [source] Electrochemical Sensors Based on Carbon NanotubesELECTROANALYSIS, Issue 23 2002Qiang Zhao Abstract Carbon nanotubes are attractive new materials. It has been about a decade since carbon nanotubes were discovered. Carbon nanotubes have many outstanding properties and have many practical or potential applications. In this short review we introduce recent advances in carbon nanotubes as potential material for electrochemical sensors. The advantages of carbon nanotubes as sensors are discussed along with future prospects. [source] Synthesis of Carbon Nanofibers for Mediatorless Sensitive Detection of NADHELECTROANALYSIS, Issue 15 2008Yang Liu Abstract Highly sensitive amperometric detection of dihydronicotinamide adenine dinucleotide (NADH) by using novel synthesized carbon nanofibers (CNFs) without addition of any mediator has been proposed. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were applied without any oxidation pretreatment to construct the electrochemical sensor. In amperometric detection of NADH, a linear range up to 11.45,,M with a low detection limit of 20,nM was obtained with the CNF-modified carbon paste electrode (CNF-CPE). Good selectivity was exhibited for the simultaneous detection of NADH and its common interferent of ascorbic acid (AA) by differential pulse voltammogram. The attractive electrochemical performance and the versatile preparation process of the CNF-CPE made it a promising candidate for designing effective NADH sensor. [source] Adsorptive Stripping Voltammetric Determination of 4-Hexylresorcinol in Pharmaceutical Products Using Multiwalled Carbon Nanotube Based ElectrodesELECTROANALYSIS, Issue 15 2008Roohollah, Torabi Kachoosangi Abstract A sensitive electroanalytical method is presented for the determination of 4-hexylresorcinol using adsorptive stripping voltammetry (AdsSV) at a multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode (MWCNT-BPPGE). This method is also extended to the use of a MWCNT modified screen-printed electrode (MWCNT-SPE), thereby demonstrating that this approach can easily be incorporated into a facile and inexpensive electrochemical sensor. [source] Permselective and Preconcentration Properties of a Surfactant-Intercalated Clay Modified ElectrodeELECTROANALYSIS, Issue 22 2006E. Ngameni Abstract This work is focused on the voltammetric examination of the ion exchange properties of a smectite type clay, before and after its modification by the replacement of its native interlamellar cations (Na+, K+, Ca2+) by hexadecyltrimethylammonium cations (HDTMA+). The raw clay and its organically modified form were first characterized by X-ray diffraction (XRD) and N2 adsorption,desorption isotherms (BET method) that confirmed the modification via an intercalation process. These materials were subsequently coated onto glassy carbon surfaces, and the resulting modified electrodes were evaluated for the uptake of [Ru(NH3)6]3+ and [Fe(CN)6]3, ions used as redox probes. Some experimental parameters affecting the incorporation of the probes within the film, including the ionic strength, the surfactant loading and the solution pH are thoroughly examined, in order to highlight the mechanism of the process. The possibility of using the surfactant-intercalated clay modified electrode as an electrochemical sensor for [Fe(CN)6]3, is also evaluated. [source] Gold Nanoparticles in Nonenzymatic Electrochemical Detection of SugarsELECTROANALYSIS, Issue 19-20 2006Fredy Kurniawan Abstract A nonenzymatic electrochemical sensor for detection of sugars was prepared by layer-by-layer deposition of gold nanoparticles on thin gold electrodes. The deposition was optimized by using of surface plasmon resonance. Voltammetric investigation and impedance spectroscopy of the sensor was performed. Electrical currents caused by glucose on bare gold electrodes and on gold electrodes coated by immobilized gold nanoparticles were compared. The electrodes with nanoparticles display much higher current of glucose oxidation. The oxidation becomes blocked when the swept electrode potential exceeded +0.25,V, during the back scan an oxidation peak is observed again but at less positive potential. The magnitudes of these current peaks are linearly dependent on the glucose concentration; this dependence can be used as calibration for analytical applications. The limit of detection for glucose is below 0.5,mM, the sensitivity (normalized to the macroscopic electrode surface) is about 160,,A,cm,2,mM,1. The sensor response is linear till at least 8,mM of glucose concentration. [source] Sensing with Nafion Coated Carbon Nanotube Field-Effect TransistorsELECTROANALYSIS, Issue 1-2 2004Alexander Star Abstract Sequential CVD and CMOS processes were used to make a FET that has single walled carbon nanotubes to serve as the conducting source to drain channel. This structure can be decorated to provide gas and liquid responses and herein is evaluated as a humdity sensor. The Na+, K+, and Ca2+ ion-exchanged Nafion polymer acts as the chemically sensitive layer in this electrochemical sensor. The effect of gate voltage on the charge-sensitive NT structure was found to be RH dependent over the range of 12,93% RH with msec response time. [source] Multilayer Assemblies Consisting of Tri-Vanadium-Substituted Heteropolyanions and Its Electrocatalytic PropertiesELECTROANALYSIS, Issue 14 2003Shengyong Zhai Abstract We describe the controlled fabrication of ultrathin multilayer films consisting of tri-vanadium- substituted heteropolytungstate anions (denoted as P2W15V3) and a cationic polymer of quaternized poly (4-vinylpyridine) partially complexed with osmium bis(2,2,-bipyridine) (denoted as QPVP-Os) on the 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode (GCE) surface based on layer-by-layer assembly. Cyclic voltammetry and UV-vis absorption spectrometry have been used to easily monitor the thickness and uniformity of thus-formed multilayer films. The V-centered redox reaction of P2W15V3 in the multilayer films can effectively catalyze the reduction of BrO and NO. The resulting P2W15V3/QPVP-Os multilayer film modified electrode behaves as a much promising electrochemical sensor because of the low overpotential for the catalytic reduction of BrO and NO, and the catalytic oxidation of ascorbic acid. [source] Tumoricidal activity of high-dose tumor necrosis factor-, is mediated by macrophage-derived nitric oxide burst and permanent blood flow shutdownINTERNATIONAL JOURNAL OF CANCER, Issue 2 2008Chandrakala Menon Abstract This study investigates the role of tumor nitric oxide (NO) and vascular regulation in tumor ulceration following high-dose tumor necrosis factor-, (TNF) treatment. Using TNF-responsive (MethA) and nonresponsive (LL2) mouse tumors, tumor NO concentration was measured with an electrochemical sensor and tumor blood flow by Doppler ultrasound. Mice were also pretreated with a selective inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. Tumors harvested from TNF-treated mice were cryosectioned and immunostained for murine macrophages, or/and iNOS. MethA tumor-bearing mice were depleted of macrophages. Pre- and post-TNF tumor NO levels were measured continuously, and mice were followed for gross tumor response. In MethA tumors, TNF caused a 96% response rate, and tumor NO concentration doubled. Tumor blood flow decreased to 3% of baseline by 4 hr and was sustained at 24 hr and 10 days post-TNF. Selective NO inhibition with 1400 W blocked NO rise and decreased response rate to 38%. MethA tumors showed tumor infiltration by macrophages post-TNF and the pattern of macrophage immunostaining overlapped with iNOS immunostaining. Depletion of macrophages inhibited tumor NO increase and response to TNF. LL2 tumors had a 0% response rate to TNF and exhibited no change in NO concentration. Blood flow decreased to 2% of baseline by 4 hr, recovered to 56% by 24 hr and increased to 232% by 10 days. LL2 tumors showed no infiltration by macrophages post-TNF. We conclude that TNF causes tumor infiltrating, macrophage-derived iNOS-mediated tumor NO rise and sustained tumor blood flow shutdown, resulting in tumor ulceration in the responsive tumor. © 2008 Wiley-Liss, Inc. [source] 2,5-Diphenyl-3,4-bis(2-pyridyl)cyclopenta-2,4-dien-1-one as a Redox-Active Chelating LigandCHEMISTRY - A EUROPEAN JOURNAL, Issue 22 2004Ulrich Siemeling Prof. Abstract 2,5-Diphenyl-3,4-bis(2-pyridyl)cyclopenta-2,4-dien-1-one (1), a close relative of tetraphenylcyclopentadienone, is a new ligand platform for use in redox switches and sensors. Compound 1 acts as a molecular electrochemical sensor towards a range of divalent metal ions and exhibits favourable two-wave behaviour. It forms chelates of the type [(1)MX2], whose stability is enhanced by five orders of magnitude upon one-electron reduction. The bite angle of 1 is close to 90° in these complexes. The attachment of the 14-valence-electron Cp*Co fragment to the cyclopentadienone , system reduces the bite angle and thus modulates the binding characteristics of 1. [source] Toxicity Assessment of Cyanide and Tetramethylene Disulfotetramine (Tetramine) Using Luminescent Bacteria Vibrio-qinghaiensis and PbO2 Electrochemical SensorCHINESE JOURNAL OF CHEMISTRY, Issue 2 2007Wei Liu Abstract The toxicities of cyanide and tetramethylene disulfotetramine (tetramine) were evaluated by two methods of luminescent bacteria and PbO2 electrochemical sensor. Vibrio-qinghaiensis, a kind of luminescent bacteria, can produce bioluminescence and the bioluminescence was decreased with the addition of toxicants. The toxicities of cyanide and tetramine were expressed as 10 min-EC50 value, which was the concentration of chemical that reduces the light output by 50% after contact for 10 min. Nano PbO2 modified electrode, a rapid toxicity determination method was also described in this work. By the PbO2 modified electrode, the current responses of Escherichia coli (E. coli) were changed with the addition of toxicants. The value of 10 min-EC50 was also provided with the PbO2 electrochemical sensor. Compared with the 10 min-EC50 and detection limits (38.38 and 0.60 µg/mL for cyanide, 0.24 and 0.02 µg/mL for tetramine) with luminescent bacteria, the PbO2 sensor provided a simple and convenient method with lower 10 min-EC50 and detection limits (26.37 and 0.52 µg/mL for cyanide, 0.21 and 0.01 µg/mL for tetramine) and fast response time. [source] A New Amperometric Hydrazine Sensor Based on Prussian Blue/Single-walled Carbon Nanotube NanocompositesELECTROANALYSIS, Issue 16 2010Cong Wang Abstract A slow reaction process has been successfully used to synthesize Prussian blue/single-walled carbon nanotubes (PB/SWNTs) nanocomposites. Electrochemical and surface characterization by cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed the presence of PB nanocrystallites on SWNTs. PB/SWNTs modified glassy carbon electrode (GCE) exhibits efficient electron transfer ability and high electrochemical response towards hydrazine. The fabricated hydrazine sensor showed a wide linear range of 2.0×10,6,6.0×10,3,M with a response time less than 4,s and a detection limit of 0.5,,M. PB/SWNTs modified electrochemical sensors are promising candidates for cost-effective in the hydrazine assays. [source] A Novel Polycatechol/Ordered Mesoporous Carbon Composite Film Modified Electrode and Its Electrocatalytic ApplicationELECTROANALYSIS, Issue 15 2010Jing Bai Abstract Polycatechol (PCC) was prepared by electropolymerizing catechol (CC) on the surface of an ordered mesoporous carbon (OMC) modified electrode for the first time. Scanning electron microscopy (SEM) and cyclic voltammetry (CV) were used to characterize the structure and electrochemical behaviors of PCC/OMC nanocomposite film. Compared with the bare GC and OMC/GC electrodes, the PCC/OMC/GC electrode exhibits a good electrocatalysis toward the oxidation of NADH at 0.0,V with a high sensitivity (8.7 mA/mM). These make PCC/OMC/GC electrode a promising candidate for stable and efficient electrochemical sensors for the detection of NADH. [source] Amperometric Determination of Glucose at Conventional vs.ELECTROANALYSIS, Issue 12 2010Nanostructured Gold Electrodes in Neutral Solutions Abstract The conventional gold electrodes were compared with recently published electrodes based on gold nanoparticles and gold nanostructured films as amperometric sensors for glucose in pH,7.40 phosphate buffer solutions. The conventional electrodes provided similar electroanalytical benefits while required much simpler and shorter preparation. It is recommended that the future reports on the development of electrochemical sensors based on metal nanoparticles/nanostructures include also the analytical figures of merit obtained at relevant conventional metal electrodes. The voltammetric studies indicated that, in contrast to phosphate buffers, the Tris buffers were not suitable for activation of gold surface toward the direct oxidation of glucose. [source] Graphene Based Electrochemical Sensors and Biosensors: A ReviewELECTROANALYSIS, Issue 10 2010Yuyan Shao Abstract Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed. [source] Disposable Amperometric Sensors for Thiols with Special Reference to GlutathioneELECTROANALYSIS, Issue 18 2008Dipankar Bhattacharyay Abstract The antioxidant ,reduced glutathione' tripeptide is conventionally called glutathione (GSH). The oxidized form is a sulfur-sulfur linked compound, known as glutathione disulfide (GSSG). Glutathione is an essential cofactor for antioxidant enzymes; it provides protection also for the mitochondria against endogenous oxygen radicals. The ratio of these two forms can act as a marker for oxidative stress. The majority of the methods available for estimation of both the forms of glutathione are based on colorimetric and electrochemical assays. In this study, electrochemical sensors were developed for the estimation of both GSH and GSSG. Two different types of transducers were used: i) screen-printed three-electrode disposable sensor (SPE) containing carbon working electrode, carbon counter electrode and silver/silver chloride reference electrode; ii) three-electrode disposable system (CDE) consisting of three copper electrodes. 5,5,-dithiobis(2-nitrobenzoic acid) (DTNB) was used as detector element for estimation of total reduced thiol content. The enzyme glutathione reductase along with a co-enzyme reduced nicotinamide adenine dinucleotide phosphate was used to estimate GSSG. By combining the two methods GSH can also be estimated. The detector elements were immobilized on the working electrodes of the sensors by bulk polymerization of acrylamide. The responses were observed amperometrically. The detection limit for thiol (GSH) was less than 0.6,ppm when DTNB was used, whereas for GSSG it was less than 0.1,ppm. [source] The NADH Electrochemical Detection Performed at Carbon Nanofibers Modified Glassy Carbon ElectrodeELECTROANALYSIS, Issue 14 2007Adina Arvinte Abstract In this work, the capability of carbon nanofibers to be used for the design of catalytic electrochemical biosensors is demonstrated. The direct electrochemistry of NADH was studied at a glassy carbon electrode modified using carbon nanofibers. A decrease of the oxidation potential of NADH by more than 300,mV is observed in the case of the assembled carbon nanofiber-glassy carbon electrode comparing with a bare glassy carbon electrode. The carbon nanofiber-modified electrode exhibited a wide linear response range of 3×10,5 to 2.1×10,3,mol L,1 with a correlation coefficient of 0.997 for the detection of NADH, a high specific sensitivity of 3637.65 (,A/M cm2), a low detection of limit (LOD=3,) of 11,,M, and a fast response time (3,s). These results have confirmed the fact that the carbon nanofibers represent a promising material to assemble electrochemical sensors and biosensors. [source] Copper Oxide , Graphite Composite Electrodes: Application to Nitrite SensingELECTROANALYSIS, Issue 1 2007Biljana, ljuki Abstract A simple method for the modification of carbon powder with copper oxides is presented. Carbon powder is impregnated with copper(II) nitrate by stirring carbon powder in copper(II) nitrate solution for 1 hour and subsequently thermally treated at 823,K. The modified carbon powder was characterized using electrochemical and spectroscopic techniques. The existence of both copper(I) and copper(II) oxides have been established. The copper oxide modified carbon powder was used for preparation of composite electrodes, and the electrochemical and electrocatalytic behavior of the resulting composite electrodes was studied. The copper oxide modified carbon powder , epoxy composite electrodes showed a high electrocatalytic activity for the nitrite detection in aqueous media, with the detection limit comparable or lower than detection limits obtained with other electrochemical sensors. [source] Chemical Reactivity of Polypyrrole and Its Relevance to Polypyrrole Based Electrochemical SensorsELECTROANALYSIS, Issue 16 2006Krzysztof MaksymiukArticle first published online: 26 JUL 200 Abstract One of the most frequently used conducting polymers, polypyrrole, can take part in chemical processes with typical components of ambient media: oxygen, acids, bases, redox reactants, water, and organic vapors; it can also incorporate nonreactive ions and surfactants from solutions. The influence of such processes on changes of the polymer structure, composition and on possible degradation is analyzed. The benefits and disadvantages of such processes for analytical characteristic of polypyrrole based electrochemical sensors are considered. This discussion is focused on potentiometric ion sensors, where polypyrrole is either a receptor membrane or an ion-to-electron transducer placed between a solid state electrode support and a typical ion-selective membrane. [source] Peptide Modified Electrodes as Electrochemical Metal Ion SensorsELECTROANALYSIS, Issue 15 2006Edith Chow Abstract Sensors for the detection of metal ions are of considerable importance for enabling the monitoring of environmental samples for metal ion contamination directly in the field. This review outlines the use of peptides and amino acids as the recognition element of electrochemical sensors for metal ion detection. Initially the complexation of metals by peptides is discussed followed by the immobilization of peptides on electrode surfaces. Subsequently, the application of peptide modified electrodes for detecting metals is reviewed and finally challenges and future prospects are outlined. [source] Application of Nanoparticles in Electrochemical Sensors and BiosensorsELECTROANALYSIS, Issue 4 2006Xiliang Luo Abstract The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. Many kinds of nanoparticles, such as metal, oxide and semiconductor nanoparticles have been used for constructing electrochemical sensors and biosensors, and these nanoparticles play different roles in different sensing systems. The important functions provided by nanoparticles include the immobilization of biomolecules, the catalysis of electrochemical reactions, the enhancement of electron transfer between electrode surfaces and proteins, labeling of biomolecules and even acting as reactant. This minireview addresses recent advances in nanoparticle-based electrochemical sensors and biosensors, and summarizes the main functions of nanoparticles in these sensor systems. [source] Electrocatalytic Properties and Sensor Applications of Fullerenes and Carbon NanotubesELECTROANALYSIS, Issue 9 2003Bailure Abstract The electrochemical behavior of fullerene and fullerene derivatives are reviewed with special reference to their catalytic and sensor applications. Recent work on carbon nanotubes, used as catalyst supports in heterogeneous catalysis and sensor development is also presented. An overview of recent progress in the area of fullerene electrochemistry is included. Several cases of electrocatalytic dehalogenation of alkyl halides, assisted by the electrode charge transfer to fullerenes, are discussed. Research work on the electrocatalysis of biomolecules, such as hemin, cytochrome c, DNA, coenzymes, glucose, ascorbic acid, dopamine, etc. have also been considered. Based on the studies of the interaction of fullerenes, fullerene derivatives, and carbon nanotubes with other molecules and biomolecules in particular, the possibilities for the preparation of electrochemical sensors and their application in electroanalytical chemistry are highlighted. [source] Electrochemical Sensors Based on Carbon NanotubesELECTROANALYSIS, Issue 23 2002Qiang Zhao Abstract Carbon nanotubes are attractive new materials. It has been about a decade since carbon nanotubes were discovered. Carbon nanotubes have many outstanding properties and have many practical or potential applications. In this short review we introduce recent advances in carbon nanotubes as potential material for electrochemical sensors. The advantages of carbon nanotubes as sensors are discussed along with future prospects. [source] |