Electrochemical

Distribution by Scientific Domains
Distribution within Chemistry

Terms modified by Electrochemical

  • electrochemical activation
  • electrochemical activity
  • electrochemical analysis
  • electrochemical application
  • electrochemical approach
  • electrochemical behavior
  • electrochemical behaviour
  • electrochemical biosensor
  • electrochemical capacitor
  • electrochemical cell
  • electrochemical characteristic
  • electrochemical characterization
  • electrochemical corrosion
  • electrochemical data
  • electrochemical deposition
  • electrochemical detection
  • electrochemical detector
  • electrochemical device
  • electrochemical etching
  • electrochemical experiment
  • electrochemical gradient
  • electrochemical impedance spectroscopy
  • electrochemical investigation
  • electrochemical kinetics
  • electrochemical measurement
  • electrochemical method
  • electrochemical methods
  • electrochemical microscopy
  • electrochemical oxidation
  • electrochemical performance
  • electrochemical phenomenoN
  • electrochemical polymerization
  • electrochemical potential
  • electrochemical preparation
  • electrochemical procedure
  • electrochemical process
  • electrochemical property
  • electrochemical reaction
  • electrochemical reactor
  • electrochemical reduction
  • electrochemical response
  • electrochemical sensing
  • electrochemical sensor
  • electrochemical signal
  • electrochemical stability
  • electrochemical studies
  • electrochemical study
  • electrochemical synthesis
  • electrochemical system
  • electrochemical technique
  • electrochemical techniques
  • electrochemical treatment
  • electrochemical window

  • Selected Abstracts


    A New Amperometric Hydrazine Sensor Based on Prussian Blue/Single-walled Carbon Nanotube Nanocomposites

    ELECTROANALYSIS, Issue 16 2010
    Cong Wang
    Abstract A slow reaction process has been successfully used to synthesize Prussian blue/single-walled carbon nanotubes (PB/SWNTs) nanocomposites. Electrochemical and surface characterization by cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed the presence of PB nanocrystallites on SWNTs. PB/SWNTs modified glassy carbon electrode (GCE) exhibits efficient electron transfer ability and high electrochemical response towards hydrazine. The fabricated hydrazine sensor showed a wide linear range of 2.0×10,6,6.0×10,3,M with a response time less than 4,s and a detection limit of 0.5,,M. PB/SWNTs modified electrochemical sensors are promising candidates for cost-effective in the hydrazine assays. [source]


    Comparison of Electrochemical and Surface Plasmon Resonance Immunosensor Responses on Single Thin Film

    ELECTROANALYSIS, Issue 20 2008
    Ryoji Kurita
    Abstract This paper reports results obtained when comparing an electrochemical enzyme immunosensor and a surface plasmon resonance (SPR) based immunosensor on the same gold surface installed in an electrochemical SPR flow cell. Simultaneous electrochemical and SPR measurements were performed on a gold surface modified with multilayers of poly- L -lysine and poly-styrenesulfonate assembled with the layer-by-layer method. First, we obtained the SPR response induced by the formation of an immunocomplex from the shift in the SPR angle by injecting an anti tumor necrosis factor-, antibody solution labeled with alkaline phosphatase into the flow cell containing the multilayer modified with tumor necrosis factor-,. Then we compared this SPR result with that obtained for the electrochemical oxidation current of p -aminophenol catalyzed by alkaline phosphatase from p -aminophenolphosphate on the same gold film. We compared the two immunosensor responses obtained using the different measurement principles and found that there was a high correlation efficient of 0.973 between them. This was because we were able to immobilize the immunoreagents with good stability and without losing the transport of the enzyme product in the multilayer whose thickness we easily controlled with nanometer scale accuracy. We also report that the detection limit of our electrochemical immunosensor after optimization was around 100,pg/mL (0.4,pM), which is one of the lowest values yet reported for an electrochemical immunosensor. [source]


    Study of Factors Affecting Molecular Behaviors in Phenothiazine-Mediated Biosensing by Electrochemical and Spectroscopic Methods

    ELECTROANALYSIS, Issue 23 2006
    Yetunde
    Abstract Reagentless glucose-detecting biosensors were constructed by incorporating a series of phenothiazine derivatives as mediators onto chitosan (CHIT) matrix via different covalent bonds, wherein glucose oxidase (GOx) was employed as the enzyme. Electrochemical studies show significant decrease in the electrocatalytic current during cyclic voltammetric and amperometric measurements, resulting from complexes formation between GOx and phenothiazine molecules. This behavior was further verified by spectroscopic studies. The decrease in the peak intensity at 258,nm is due to the gradual complexes formation over time, consistent to the decrease in the current signal in electrochemical investigations. Correlation with the molecular structures of phenothiazine derivatives reveals a strong relationship between the hydrophobicity of the mediators and the stability of the biosensor electrodes. [source]


    Characterization of Nanopore Electrode Structures as Basis for Amplified Electrochemical Assays

    ELECTROANALYSIS, Issue 19-20 2006
    Sebastian Neugebauer
    Abstract A nanopore electrode structure was fabricated consisting of ensembles of nanopores with separately addressable electrodes at the pore bottoms and the rims. A metal/insulator/metal layer structure allowed for adjusting the spacing between the bottom and rim electrodes to be in the range of about 200,nm. Pore diameters varied between 200 and 800,nm. The electrochemical properties of this electrode structure and its perspectives for applications in bioelectronics were studied using cyclic voltammetry and chronoamperometry along with high-resolution scanning electrochemical microscopy (SECM) in constant-distance mode. It was possible to visualize the electrochemical activity of a single nanometric electrode using high-resolution SECM in a combination of sample-generation-tip-collection mode and positive feedback mode. The SECM images suggested an influence of the unbiased rim electrode on redox amplification which was used as a basis for evaluating the feasibility of current amplification by means of redox cycling between the bottom and rim electrodes. Amplification factors superior to those obtained with interdigitated array electrodes could be demonstrated. [source]


    A Reference Electrode for Electrochemical and Cryoelectrochemical Use in Tetrahydrofuran Solvent

    ELECTROANALYSIS, Issue 21 2005
    Christopher
    Abstract We report a reference electrode for direct use in tetrahydrofuran (THF) at low temperatures. A reference solution containing equimolar amounts of ferrocene/ferrocenium hexafluorophosphate (Fc/Fc+) are prepared to give a 4,mM solution in THF that contains tetrabutylammonium hexafluorophosphate (TBAF) supporting electrolyte thus, minimizing liquid junction potentials. The reference solution is added to a sealed glass tube with a porous frit at one end, and a platinum wire is inserted into the tube. The reference electrode assembly is then inserted into a THF test solution. Potentiometric measurements show that the system responds in the expected Nernstian fashion over the concentration and temperature ranges, 4,mM to 40,,M and 20,°C to ,45,°C respectively. In addition, it is shown by steady,state cyclic voltammetry at a platinum microelectrode that the chemical reactivity of ferrocenium hexafluorophosphate (Fc+) otherwise seen in THF is suppressed by ion-pairing with PF using tetrabutylammonium hexafluorophosphate (TBAF) as the supporting electrolyte. [source]


    Electrochemical, Chemical and Enzymatic Oxidations of Phenothiazines

    ELECTROANALYSIS, Issue 17 2005
    B. Blankert
    Abstract The oxidation of several phenothiazine drugs (phenothiazine, promethazine hydrochloride, promazine hydrochloride, trimeprazine hydrochloride and ethopropazine hydrochloride) has been carried out in aqueous acidic media by electrochemical, chemical and enzymatic methods. The chemical oxidation was performed in acetic acid with hydrogen peroxide or in formate buffers using persulfate. The enzymatic oxidation was performed in acetate or ammonium formate buffer by the enzyme horseradish peroxidase in the presence of H2O2. Molecules with, in the lateral chain, two carbon atoms (2C) separating the ring nitrogen and the terminal nitrogen, showed two parallel oxidation pathways, that is (i) formation of the corresponding sulfoxide and (ii) cleavage of the lateral chain with liberation of phenothiazine (PHZ) oxidized products (PHZ sulfoxide and PHZ quinone imine). Molecules with three carbon atoms (3C) separating the two nitrogens were oxidized to the corresponding sulfoxide. The chemical oxidation of all the studied molecules by hydrogen peroxide resulted in the corresponding sulfoxide with no break of the lateral chain. Oxidation by persulfate yielded, for the 3C derivatives, only the corresponding sulfoxide, but it produced cleavage of the lateral chain for the 2C derivatives. The origin of the distinct oxidation pattern between 2C and 3C molecules might be related to steric effects due to the lateral chain. The data are of interest in drug metabolism studies, especially for the early search. In the case of 2C phenothiazines, the results predict the possibility of an in vivo cleavage of the lateral chain with liberation of phenothiazine oxidized products which are known to produce several adverse side effects. [source]


    Single End-to-End Azidocopper(II) Chain Based on an Electroactive Ligand: A Structural, Electrochemical, Magnetic and Ab Initio Study

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 31 2009
    Guillaume Pilet
    Abstract By combining azide and the (Z)-1,1,1-trifluoro-4-(quinolin-8-ylamino)but-3-en-2-one enaminone ligand, HL, an azido-bridged copper(II) one dimensional polymer was synthesized in a one-pot reaction. The solved and refined crystal structure evidenced the unusual single and asymmetric end-to-end coordination mode of the azide ion. The redox properties of this complex were studied by cyclic voltammetry, andoxidation of the azido bridge was evidenced. Magneticmeasurements, combined with magnetostructural-driven analysis revealed a weak ferromagnetic interaction between the copper(II) ions within the N3, -bridged chains, complemented by an antiferromagnetic interaction between the chains mediated by ,,, interactions. A survey of the scarce literature of single end-to-end azido bridges, associated with quantum chemical ab initio calculations, was carried out to tentatively identify the relevant parameters driving the weak intrachain exchange interaction.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    A New Pentadentate Ligand Forms Both a Di- and a Mononuclear MnII Complex: Electrochemical, Spectroscopic and Superoxide Dismutase Activity Studies

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 28 2007
    Federico Cisnetti
    Abstract The X-ray crystal structure of the dinuclear complex[1(PF6)2] derived from a new ligand bearing both imidazole and phenolato moieties, namely N -(2-hydroxybenzyl)- N,N,-bis[2-(N -methylimidazolyl)methyl]ethane-1,2-diamine (LH), is described and its properties in organic solvent (CH3CN) investigated (EPR, electrochemistry). [1(PF6)2] is shown to be a mononuclear MnII species in aqueous solution and displays an efficient SOD-like activity, as measured by the McCord,Fridovich assay performed both in conventional phosphate buffer and in a noncoordinating buffer (PIPES). (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    Transition-Metal (MnII and CoII) Complexes with the Heteropolymolybdate Fragment [AsVMo9O33]7,: Crystal Structures, Electrochemical and Magnetic Properties

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 17 2007
    Yanyan Yang
    Abstract Two novel heteropolymolybdates, [(CH3)4N]8n[M(H2O)5]2n(H3O)2n[{M(H2O)5}2(MAsVMo9O33)2]n[M(H2O)4(MAsVMo9O33)2]n·20nH2O (M = Mn2+, 1; M = Co2+, 2), constructed from the new fragment (AsVMo9O33)7, and a transition metal have been synthesized in aqueous solution and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, and single-crystal X-ray diffraction. Structurally the title complexes resemble a sandwich-type complex because they involve the coordination of two transition metals to two [AsVMo9O33]7, fragments, which derive from the well-known B -, - Keggin structure. Compounds 1 and 2 exhibit a one-dimensional chain-like framework [M(H2O)4(MAsVMo9O33)2]8n, with isolated {[M(H2O)5]2(MAsVMo9O33)2}6, units residing among the chains. The magnetic properties of the two complexes were investigated to indicate typical antiferromagnetic interactions through the MnII,O,MnII bridge unit for complex 1 and the CoII,O,CoII bridge unit for complex 2. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    A Rigid Molecular Scaffold Affixing a (Polypyridine)ruthenium(II)- and a Nickel(II)-Containing Complex: Spectroscopic Evidence for a Weakly Coupled Bichromophoric System

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 10 2003
    Yann Pellegrin
    Abstract The synthesis of DppztBuSalH2 (7), a rigid conjugated ditopic ligand containing a Dppz (dipyrido[3,2- a:2,,3,- c]phenazine) skeleton and a salophen-type chelate, is reported. The complexes DppztBuSalNi (10), [Ru(bpy)2(DppztBuSalH2)]2+ (11), and [Ru(bpy)2(DppztBuSalNi)]2+ (12) have been prepared and characterised using common spectroscopic methods. Electrochemical, UV/Vis spectroelectrochemical and EPR studies were conducted on compounds 7, 10, 11, and 12. The singly reduced radical forms of 7 and 10 can be generated electrochemically, with the lone electron located on the low-lying phenazine ,*-molecular orbital. Complexes 11 and 12 show several reduction waves and electronic and EPR data obtained for the electrogenerated singly reduced species show them to be closely related to the radical species 7·, and 10·,, respectively. The presence of nickel(II) in compound 12 renders the addition of the second electron on the phenazine group reversible. Both 11 and 12 show common features on the cathodic side of their cyclic voltammograms, with reversible one-electron ruthenium-centred oxidation. An additional low-potential reversible-oxidation wave is observed for 12, and this is ascribed to oxidation of the nickel(II) ion. The combined spectroscopic data best describe the ruthenium-containing complexes as weakly coupled bichromophoric systems. Photophysical studies attest to the formation of a charge-separated state for 11, whereas a strong quenching is detected for 12. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


    A Novel Bis(zinc,porphyrin),Oxoporphyrinogen Donor,Acceptor Triad: Synthesis, Electrochemical, Computational and Photochemical Studies

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 3 2006
    Jonathan P. Hill
    Abstract The first example of a porphyrin-quinonoid donor,acceptor triad featuring (tetraphenylporphinato)zinc(II) moieties covalently attached to an oxoporphyrinogen through its macrocyclic nitrogen atoms is reported. This arrangement of chromophores results in an interesting interplay between the electron-donating zinc,porphyrin(s) and the electron/energy accepting oxoporphyrinogen. The optical absorption of the triad reveals features corresponding to both the donor and acceptor entities. The geometry and electronic structure of the triad deduced from B3LYP/3-21G(*) calculations reveal an absence of inter-chromophoric interactions and localization of the HOMO on one zinc,porphyrin group and the LUMO on the oxoporphyrinogen scaffold. The electrochemical redox states of the triad were established from a comparative electrochemistry of the triad and the reference compounds. Both steady-state and time-resolved emission studies revealed quenching of the singlet excited state of zinc,porphyrin in the triad, and the free-energy calculations performed using Weller's approach indicate the possibility of electron transfer from the singlet excited zinc,porphyrin group to the oxoporphyrinogen in polar solvents. Time-resolved fluorescence studies reveal excited state energy transfer from zinc,porphyrin to oxoporphyrinogen in nonpolar solvents, while nanosecond transient absorption studies combined with time-resolved fluorescence studies in polar solvents are indicative of the occurrence of photoinduced charge separation from the singlet excited zinc,porphyrin to the oxoporphyrinogen. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


    High-Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene-C70 Bisadduct

    ADVANCED FUNCTIONAL MATERIALS, Issue 19 2010
    Youjun He
    Abstract [6, 6]-Phenyl-C61 -butyric acid methyl ester (PC60BM) is the widely used acceptor material in polymer solar cells (PSCs). Nevertheless, the low LUMO energy level and weak absorption in visible region are its two weak points. For enhancing the solar light harvest, the soluble C70 derivative PC70BM has been used as acceptor instead of PC60BM in high efficiency PSCs in recent years. But, the LUMO level of PC70BM is the same as that of PC60BM, which is too low for the PSCs based on the polymer donors with higher HOMO level, such as poly (3-hexylthiophene) (P3HT). Here, a new soluble C70 derivative, indene-C70 bisadduct (IC70BA), is synthesized with high yield of 58% by a one-pot reaction of indene and C70 at 180 °C for 72 h. The electrochemical properties and electronic energy levels of the fullerene derivatives are measured by cyclic voltammetry. The LUMO energy level of IC70BA is 0.19 eV higher than that of PC70BM. The PSC based on P3HT with IC70BA as acceptor shows a higher Voc of 0.84 V and higher power conversion efficiency (PCE) of 5.64%, while the PSC based on P3HT/PC60BM and P3HT/PC70BM displays Voc of 0.59 V and 0.58 V, and PCE of 3.55% and 3.96%, respectively, under the illumination of AM1.5G, 100 mW cm,2. The results indicate that IC70BA is an excellent acceptor for the P3HT-based PSCs and could be a promising new acceptor instead of PC70BM for the high performance PSCs based on narrow bandgap conjugated polymer donor. [source]


    The Origin of the High Voltage in DPM12/P3HT Organic Solar Cells

    ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
    Antonio Sánchez-Díaz
    Abstract Organic solar cells made using a blend of DPM12 and P3HT are studied. The results show that higher Voc can be obtained when using DPM12 in comparison to the usual mono-substituted PCBM electron acceptor. Moreover, better device performances are also registered when the cells are irradiated with sun-simulated light of 10,50 mW cm,2 intensity. Electrochemical and time-resolved spectroscopic measurements are compared for both devices and a 100-mV shift in the density of states (DOS) is observed for DPM12/P3HT devices with respect to PCBM/P3HT solar cells and slow polaron-recombination dynamics are found for the DPM12/P3HT devices. These observations can be directly correlated with the observed increase in Voc, which is in contrast with previous results that correlated the higher Voc with different ideality factors obtained using dark-diode measurements. The origin for the shift in the DOS can be correlated to the crystallinity of the blend that is influenced by the properties of the included fullerene. [source]


    Effect of Carbon Chain Length in the Substituent of PCBM-like Molecules on Their Photovoltaic Properties

    ADVANCED FUNCTIONAL MATERIALS, Issue 9 2010
    Guangjin Zhao
    Abstract A series of [6,6]-phenyl-C61 -butyric acid methyl ester (PCBM)-like fullerene derivatives with the butyl chain in PCBM changing from 3 to 7 carbon atoms, respectively (F1,F5), are designed and synthesized to investigate the relationship between photovoltaic properties and the molecular structure of fullerene derivative acceptors. F2 with a butyl chain is PCBM itself for comparison. Electrochemical, optical, electron mobility, morphology, and photovoltaic properties of the molecules are characterized, and the effect of the alkyl chain length on their properties is investigated. Although there is little difference in the absorption spectra and LUMO energy levels of F1,F5, an interesting effect of the alkyl chain length on the photovoltaic properties is observed. For the polymer solar cells (PSCs) based on P3HT as donor and F1,F5, respectively, as acceptors, the photovoltaic behavior of the P3HT/F1 and P3HT/F4 systems are similar to or a little better than that of the P3HT/PCBM device with power conversion efficiencies (PCEs) above 3.5%, while the performances of P3HT/F3 and P3HT/F5-based solar cells are poorer, with PCE values below 3.0%. The phenomenon is explained by the effect of the alkyl chain length on the absorption spectra, fluorescence quenching degree, electron mobility, and morphology of the P3HT/F1,F5 (1:1, w/w) blend films. [source]


    Synthesis, Electrochemical and Photophysical Properties, and Electroluminescent Performance of the Octa- and Deca(aryl)[60]fullerene Derivatives

    ADVANCED FUNCTIONAL MATERIALS, Issue 14 2009
    Yutaka Matsuo
    Abstract Three multifunctionalized organo[60]fullerene derivatives, C60Ph5(C6H4 - tBu-4)5Me2 (cyclophenacene, 1), C60Ph5(C6H4 - tBu-4)5Me2 (fused corannulene, 2), and C60Ph5(C6H4 - tBu-4)3Me2 (phenylene-bridged fused corannulene, 3) are synthesized by the reaction of C60Ph5Me with 4- tert -butylphenylcopper reagent in the presence of pyridine, followed by treatment with MeI. Compounds 1,3 undergo reduction in the range from ,1.8 to ,2.5,V versus Fc/Fc+ and exhibit photoluminescence behavior with fluorescent quantum yields of 18.5%, 2.5%, and 3.2% with fluorescent lifetimes of 67, 1.1, and 27,ns (1,3, respectively). Organic electroluminescent diode devices using 1,3 are fabricated with ,-conjugated polymers and show external electroluminescent efficiencies of 0.04%, 0.07%, and 0.03% emitting yellow, green, and red light, respectively. The device containing all three compounds emits white light. This result indicates that the bulky addends in 1,3 can effectively isolate the ,-conjugated systems of the molecules in the solid state and retard the intermolecular excited-state quenching process. [source]


    An Efficient Combined Electrochemical and Ultrasound Assisted Synthesis of Imidazole-2-Thiones

    ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 13 2009
    Marta Feroci
    Abstract The electrochemical reduction of 1,3-dialkylimidazolium ionic liquids gave the corresponding N-heterocyclic carbenes that, after reaction with elemental sulfur and ultrasound irradiation, yielded 1,3-dialkylimidazole-2-thiones in very high yields. The reaction is very clean, produces no side-products and avoids the use of any other added reagent. [source]


    Electrochemical, ESR and quantum chemical study of 1-substituted naphthalenes and their radical anions,,

    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 1 2008
    N. V. Vasilieva
    Abstract Electrochemical reduction and oxidation of a series of 1-substituted naphthalenes (1-X-naphthalenes) have been studied by the method of cyclic voltammetry (CV). The first reduction peak of the majority of these compounds corresponds to a one-electron transfer to form the relatively stable radical anion (RA). For these species, ESR spectra have been registered and interpreted, the life time has been estimated. The first oxidation peaks of 1-X-naphthalenes are irreversible and correspond to a transfer of two or more electrons. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Electrochemical and optical properties of novel donor-acceptor thiophene-perylene-thiophene polymers

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2008
    Sermet Koyuncu
    Abstract In this study, donor-acceptor type thiophene-perylene-thiophene monomers were synthesized and polymerized by both oxidative polymerization using FeCl3 as catalyst and the electrochemical process. UV,vis, FTIR, 1H NMR, and elemental analysis techniques were used for structural characterization. Thermal behaviors of these compounds were determined by using TGA system. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels and electrochemical and optical band gap values were calculated by using the results of cyclic voltammetry and UV,vis measurements, respectively. The number,average molecular weight (Mn), weight,average molecular weight (Mw), and polydispersity index (PDI) values of synthesized polymers were determined by size exclusion chromatography. Conductivity measurements of these polymers were carried out by electrometer by using a four-point probe technique. The conductivity was observed to be increased by iodine doping. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1974,1989, 2008 [source]


    Electropolymerizable Terthiophene S,S -Dioxide-Fullerene Diels-Alder Adduct for Donor/Acceptor Double-Cable Polymers

    MACROMOLECULAR RAPID COMMUNICATIONS, Issue 12 2007
    Yolanda Vida
    Abstract The preparation of a novel fullerene-thiophene derivative by Diels-Alder addition of terthiophene S,S -dioxide was demonstrated. Extrusion of SO2 from the adduct is an effective process that yields a stable cyclohexadiene-1,4-bisthiophene,C60 adduct in good isolable yield. The product has been accurately characterized and opens the way to synthesize new C60 derivatives "via" Diels-Alder methodology without the possibility of cycloreversion. Electrochemical and spectroscopic properties of this macromolecule were studied and supported by theoretical calculations to interpret its electronic structure. The first approach to the electropolymerization of this macromonomer produces donor-acceptor molecular wires providing a new and versatile way to fullerene-based double cable polymers. [source]


    Electrochemical and mechanical behaviour of Sn-2.5Ag-0.5Cu and Sn-48Bi-2Zn solders

    MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 8 2008
    G. Montesperelli
    Abstract In this paper, two tin-based alloys (Sn-2.5Ag-0.5Cu and Sn-48Bi-2Zn) are proposed as new lead-free solders. Alloys have been developed by melting pure elements. Samples have been evaluated in terms of microstructure, corrosion resistance and mechanical features. Corrosion tests have been performed in 3% NaCl solution by polarization curves and electrochemical impedance spectroscopy (EIS). SEM observations and EDS analysis were carried out on samples before and after corrosion tests. Static monotonic tensile tests have been performed on three specimens for each alloy. SEM and EDS analysis revealed the presence of Sn-Ag and Sn-Cu intermetallic compounds within the Sn-Ag-Cu alloy. As a result of corrosion test, the Sn-Ag-Cu alloy showed a better corrosion resistance with respect to Sn-Bi-Zn. Both alloys evidenced good mechanical properties higher than the traditional Sn-Pb system. Sn-Ag-Cu seems to be a suitable soldering material. [source]


    Intergranular corrosion on Nd:YAG laser-welded A653 steel for automotive application

    MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 11 2004
    Y. M. Looi
    Abstract Laser welding techniques produce a narrower heat-affected zone than other conventional welding methods. However, laser welding is not exempt from high heat input during the welding process. This high heat input results in changes of the material properties including its corrosion behaviour; the formation of the heat affected zone increases the susceptibility of the material to intergranular attack. The residue of zinc at the weld due to condensation and splashing during the welding process may also influence adversely the corrosion behaviour of the material. The degree of susceptibility to corrosion strongly depends on the welding parameters. Electrochemical and microstructure characterisation were employed to study the influence of Nd:YAG (neodymium yttrium aluminium garnet) laser-welding on an A653 galvanized steel at different welding parameters. [source]


    Optimization of Electrochemical and Peroxide-Driven Oxidation of Styrene with Ultrathin Polyion Films Containing Cytochrome P450cam and Myoglobin

    CHEMBIOCHEM, Issue 1 2003
    Bernard Munge
    Abstract The catalytic and electrochemical properties of myoglobin and cytochrome P450camin films constructed with alternate polyion layers were optimized with respect to film thickness, polyion type, and pH. Electrochemical and hydrogen peroxide driven epoxidation of styrene catalyzed by the proteins was used as the test reaction. Ionic synthetic organic polymers such as poly(styrene sulfonate), as opposed to SiO2nanoparticles or DNA, supported the best catalytic and electrochemical performance. Charge transport involving the iron heme proteins was achieved over 40,320 nm depending on the polyion material and is likely to involve electron hopping facilitated by extensive interlayer mixing. However, very thin films (ca. 12,25 nm) gave the largest turnover rates for the catalytic epoxidation of styrene, and thicker films were subject to reactant transport limitations. Classical bell-shaped activity/pH profiles and turnover rates similar to those obtained in solution suggest that films grown layer-by-layer are applicable to turnover rate studies of enzymes for organic oxidations. Major advantages include enhanced enzyme stability and the tiny amount of protein required. [source]


    ChemInform Abstract: High Regioselectivity in Electrochemical ,-Methoxylation of N-Protected Cyclic Amines.

    CHEMINFORM, Issue 41 2008
    Samuel S. Libendi
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


    Expanded Pyridiniums: Bis-cyclization of Branched Pyridiniums into Their Fused Polycyclic and Positively Charged Derivatives,Assessing the Impact of Pericondensation on Structural, Electrochemical, Electronic, and Photophysical Features

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 36 2010
    Dr. Jérôme Fortage
    Abstract This study evaluates the impact of the extension of the ,-conjugated system of pyridiniums on their various properties. The molecular scaffold of aryl-substituted expanded pyridiniums (referred to as branched species) can be photochemically bis-cyclized into the corresponding fused polycyclic derivatives (referred to as pericondensed species). The representative 1,2,4,6-tetraphenylpyridinium (1H) and 1,2,3,5,6-pentaphenyl-4-(p -tolyl)pyridinium (2Me) tetra- and hexa-branched pyridiniums are herein compared with their corresponding pericondensed derivatives, the fully fused 9-phenylbenzo[1,2]quinolizino[3,4,5,6- def]phenanthridinium (1Hf) and the hitherto unknown hemifused 9-methyl-1,2,3-triphenylbenzo[h]phenanthro[9,10,1- def]isoquinolinium (2Mef). Combined solid-state X-ray crystallography and solution NMR experiments showed that stacking interactions are barely efficient when the pericondensed pyridiniums are not appropriately substituted. The electrochemical study revealed that the first reduction process of all the expanded pyridiniums occurs at around ,1,V vs. SCE, which indicates that the lowest unoccupied molecular orbital (LUMO) remains essentially localized on the pyridinium core regardless of pericondensation. In contrast, the electronic and photophysical properties are significantly affected on going from branched to pericondensed pyridiniums. Typically, the number of absorption bands increases with extended activity towards the visible region (down to ca. 450,nm in MeCN), whereas emission quantum yields are increased by three orders of magnitude (at ca. 0.25 on average). A relationship is established between the observed differential impact of the pericondensation and the importance of the localized LUMO on the properties considered: predominant for the first reduction process compared with secondary for the optical and photophysical properties. [source]


    Neutral and Oxidized Triisopropylsilyl End-Capped Oligothienoacenes: A Combined Electrochemical, Spectroscopic, and Theoretical Study

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 18 2010
    Juan Aragó
    Abstract This work presents an analysis of the structural, electrochemical, and optical properties of a family of triisopropylsilyl end-capped oligothienoacenes (TIPS- Tn -TIPS, n=4,8) by combining cyclic voltammetry, spectroscopic techniques, and quantum-chemical calculations. TIPS- Tn -TIPS compounds form stable radical cations, and dications are only obtained for the longest oligomers (n=7 and 8). Oxidation leads to the quinoidization of the conjugated backbone, from which electrons are mainly extracted. The absorption and fluorescence spectra show partially resolved vibronic structures even at room temperature, due to the rigid molecular geometry. Two well-resolved vibronic progressions are observed at low temperatures due to the vibronic coupling, with normal modes showing wavenumbers of ,1525 and ,480,cm,1. Optical absorption bands display remarkable bathochromic dispersion with the oligomer length, indicative of the extent of , conjugation. The optical properties of the oxidized compounds are characterized by in situ UV/Vis/NIR spectroelectrochemistry. The radical cation species show two intense absorption bands emerging at energies lower than in the neutral compounds. The formation of the dication is only detected for the heptamer and the octamer, and shows a new band at intermediate energies. Optical data are interpreted with the help of density functional theory calculations performed at the B3LYP/6-31G** level, both for the neutral and the oxidized compounds. [source]


    Novel Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 6 2009
    Cheng-Wei Lee
    Abstract Novel meso - or ,-derivatized porphyrins with a carboxyl group have been designed and synthesized for use as sensitizers in dye-sensitized solar cells (DSSCs). The position and nature of a bridge connecting the porphyrin ring and carboxylic acid group show significant influences on the spectral, electrochemical, and photovoltaic properties of these sensitizers. Absorption spectra of porphyrins with a phenylethynyl bridge show that both Soret and Q,bands are red-shifted with respect to those of porphyrin 6. This phenomenon is more pronounced for porphyrins 3 and 4, which have a ,-conjugated electron-donating group at the meso position opposite the anchoring group. Upon introduction of an ethynylene group at the meso position, the potential at the first oxidation alters only slightly whereas that for the first reduction is significantly shifted to the positive, thus indicating a decreased HOMO,LUMO gap. Quantum-chemical (DFT) results support the spectroelectrochemical data for a delocalization of charge between the porphyrin ring and the amino group in the first oxidative state of diarylamino-substituted porphyrin 5, which exhibits the best photovoltaic performance among all the porphyrins under investigation. From a comparison of the cell performance based on the same TiO2 films, the devices made of porphyrin 5 coadsorbed with chenodeoxycholic acid (CDCA) on TiO2 in ratios [5]/[CDCA]=1:1 and 1:2 have efficiencies of power conversion similar to that of an N3 -based DSSC, which makes this green dye a promising candidate for colorful DSSC applications. [source]


    Influence of the Protonic State of an Imidazole-Containing Ligand on the Electrochemical and Photophysical Properties of a Ruthenium(II),Polypyridine-Type Complex

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 29 2007
    Annamaria Quaranta Dr.
    Abstract The synthesis and characterisation of [Ru(bpy)2(PhenImHPh)]2+ where PhenImHPh represents the 2-(3,5-di- tert -butylphenyl)imidazo[4,5- f][1,10]phenanthroline ligand are described. The compounds issued from the three different protonic states of the imidazole ring [Ru(bpy)2(PhenImPh)]+ (I), [Ru(bpy)2(PhenImHPh)]2+ (II) and [Ru(bpy)2(PhenImH2Ph)]3+ (III) were isolated and spectroscopically characterised. The X-ray structures of [Ru(bpy)2(PhenImPh)](PF6),H2O,6,MeOH, [Ru(bpy)2(PhenImHPh)](NO3)2,H2O,3,MeOH and [Ru(bpy)2(PhenImH2Ph)](PF6)3, 5,H2O are reported. Electrochemical data obtained on these complexes indicate almost no potential shift for the RuIII/II redox couple. Therefore a Coulombic effect between the imidazole ring and the metal centre can be ruled out. The monooxidised forms of I and II have been characterised by EPR spectroscopy and are reminiscent of the presence of a radical species. The emission properties of the parent compound [Ru(bpy)2(PhenImHPh)]2+ were studied as a function of pH and both the lifetimes and intensities decreased upon deprotonation. Photophysical properties, investigated in the absence and presence of an electron acceptor (methylviologen), were distinctly different for the three compounds. Transient absorption features indicate that unique excited states are involved. Theoretical data obtained from DFT calculations in water on the three protonic forms are presented and discussed in the light of the experimental results. [source]


    ,-Conjugated Dendrimers as Stable Pure-Blue Emissive Materials: Photophysical, Electrochemical, and Electroluminescent Properties

    CHEMISTRY - AN ASIAN JOURNAL, Issue 4 2009
    Yang Jiang
    Abstract Bigger, stronger, better: A family of giant ,-conjugated dendrimers has been developed as pure-blue active materials for organic light-emitting diodes. The dendrimer-generation number has little effect on the photophysical, electrochemical, and EL properties, and device efficiency of G0 and G1. The preliminary OLED devices achieve pure-blue color with stable CIE chromaticity coordinates (0.16, 0.08) for both G0 and G1. A family of giant ,-conjugated dendrimers has been developed as pure-blue active materials for organic light-emitting diodes (OLEDs). The investigation of their photophysical properties indicates that G0 and G1 exhibit almost the same absorption and PL spectra in dilute solutions and in thin films. The steric hindrance of the bulky dendrimers effectively prevents strong intermolecular interaction in the solid state, which effectively improves the emission spectral stability. Preliminary OLEDs fabricated with the configuration of ITO/PEDOT:PSS/PVK/dendrimer/TPBI/Ba/Al achieve a pure-blue emission with stable CIE chromaticity coordinates (0.16, 0.08) for both G0 and G1. These results indicate that G0 and G1 are promising blue-light emitting materials with good stability. Such strategy provides us a platform to achieve pure-blue emitting dendrimer-like materials with high efficiency for use as OLEDs. [source]


    Tetrachloro-substituted Perylene Bisimide Dyes as Promising n-Type Organic Semiconductors: Studies on Structural, Electrochemical and Charge Transport Properties

    CHEMPHYSCHEM, Issue 1 2004
    Zhijian Chen
    Twisted ,-systems: The highly twisted 1,6,7,12-tetrachloro-substituted perylene bisimides possess an improved electron affinity. The nonplanar nature of these molecules facilitates a slipped brickstone-type rather than a columnar stacking of the ,-systems, with a potentially useful two dimensional contact feature. These compounds show isotropic charge carrier mobilities as high as up to 0.14 cm2,V,1 s,1 (see graphic). [source]


    Electrochemical and photochemical reduction of a series of azobenzene dyes in protic and aprotic solvents

    COLORATION TECHNOLOGY, Issue 5 2003
    R Podsiad
    The electrochemical and photochemical reduction in ethanol of a series of azobenzene dyes containing tertiary amine groups has been investigated. It has been shown that the two mechanisms are of parallel importance and an explanation suggested using quantum chemical calculations (AM1, DFT). The solvation of these dyes in protic (methanol) and aprotic (dimethylformamide) solvents has also been studied and the effect of solvation on their electrochemical and photochemical reduction is discussed. [source]