Home About us Contact | |||
Electrical Activity (electrical + activity)
Kinds of Electrical Activity Selected AbstractsActions of Arachidonic Acid on Contractions and Associated Electrical Activity in Guinea-Pig Isolated Ventricular MyocytesEXPERIMENTAL PHYSIOLOGY, Issue 4 2001M. A. Mamas The actions of arachidonic acid (AA) were investigated in guinea-pig isolated ventricular myocytes. Exposure of myocytes to 10 ,M AA reduced the amplitude of contractions and calcium transients accompanying action potentials at a frequency of 1 Hz. AA (10 ,M) also reduced the amplitude of calcium currents recorded under voltage-clamp conditions. The suppression of contraction by AA was not prevented by either 10 ,M trihydroindomethicin (to inhibit cyclo-oxygenase) or 10 ,M ETYA (5,8,11,14-eicosatetraynoic acid, to inhibit AA metabolising enzymes), showing that the actions of AA appeared not to be mediated by these metabolites. The reduction of contraction by 10 ,M AA was also not prevented by the protein kinase C inhibitor, Ro31-8220 (1 ,M), showing that this pathway appeared not to be required for the observed effect. Direct effects of AA may be involved. A further action of 10 ,M AA was to suppress spontaneous electrical activity induced by either the ,-adrenergic agonist isoprenaline or the Na+ pump inhibitor, ouabain. This effect of AA on spontaneous activity might be associated with the observed reduction of calcium entry through L-type calcium channels, although additional effects of AA on calcium release from the sarcoplasmic reticulum might also be involved. [source] Brain Electrical Activity Associated With Cognitive Processing During a Looking Version of the A-Not-B TaskINFANCY, Issue 3 2001Martha Ann Bell This work was designed to investigate individual differences in brain electrical activity during a looking version of the A-not-B task. It was proposed that this spatial task required the cognitive skills of working memory and inhibitory control, each associated with frontal lobe function. Electroencephalograms (EEGs) were recorded from 54 8-month-old infants during baseline and task. Only high performers on the looking task exhibited increases in 6- to 9-Hz EEG power from baseline to task. These task-related changes were evident at frontal and posterior scalp locations. High performers on the looking task exhibited lower EEG coherence values at right hemisphere frontal locations relative to the low performers. These lower coherence values were evident during baseline and task. All infants showed increased frontal-parietal coherence during the spatial working memory task relative to baseline values. These data confirm previous cognitive neuroscience work associating frontal lobe function with cognitive performance levels during infancy. [source] Atrial Electrical Activity and Atrial FibrillationANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 3 2006Arthur J. Moss M.D. No abstract is available for this article. [source] Empathy Is Associated With Dynamic Change in Prefrontal Brain Electrical Activity During Positive Emotion in ChildrenCHILD DEVELOPMENT, Issue 4 2009Sharee N. Light Empathy is the combined ability to interpret the emotional states of others and experience resultant, related emotions. The relation between prefrontal electroencephalographic asymmetry and emotion in children is well known. The association between positive emotion (assessed via parent report), empathy (measured via observation), and second-by-second brain electrical activity (recorded during a pleasurable task) was investigated using a sample of one hundred twenty-eight 6- to 10-year-old children. Contentment related to increasing left frontopolar activation (p < .05). Empathic concern and positive empathy related to increasing right frontopolar activation (ps < .05). A second form of positive empathy related to increasing left dorsolateral activation (p < .05). This suggests that positive affect and (negative and positive) empathy both relate to changes in prefrontal activity during a pleasurable task. [source] Excitatory purinergic neurotransmission in smooth muscle of guniea-pig taenia caeciTHE JOURNAL OF PHYSIOLOGY, Issue 3 2005Yong Zhang Non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmission has been an area of intense interest in gut motor physiology, whereas excitatory NANC neurotransmission has received less attention. In order to further explore excitatory NANC neurotransmission, we performed conventional intracellular recordings from guinea-pig taenia caeci smooth muscle. Tissue was perfused with oxygenated Krebs solution at 35°C and nerve responses evoked by either oral or aboral nerve stimulation (NS) (4 square wave pulses, 0.3 ms duration, 20 Hz). Electrical activity was characterized by slow waves upon which one to three action potentials were superimposed. Oral NS evoked an inhibitory junction potential (IJP) at either the valley or peak of the slow wave. Application of nifedipine (1 ,m) abolished slow waves and action potentials, but membrane potential flunctuations (1,3 mV) and IJPs remained unaffected. Concomitant application of apamin (300 nm), a small-conductance Ca2+ -activated K+ channel blocker, converted the IJP to an EJP that was followed by slow IJP. Further administration of NG -nitro- l -arginine methyl ester (l -NAME, 200 ,m), a nitric oxide synthase inhibitor, abolished the slow IJP without affecting the EJP, implying that the slow IJP is due to nitrergic innervation. The EJP was abolished by tetrodotoxin (1 ,m), but was not significantly affected by atropine (3 ,m) and guanethidine (3 ,m) or hexamethonium (500 ,m). Substance P (SP, 1 ,m) desensitization caused slight attenuation of the EJP, but the EJP was abolished by desensitization with ,,,-methylene ATP (50 ,m), a P2 purinoceptor agonist that is more potent than ATP at the P2X receptor subtype, suramin (100 ,m), a non-selective P2 purinoceptor antagonist, and pyridoxal-phosphate-6-azophenyl-2,,4,-disulphonic acid (PPADS, 100 ,m), a selective P2X purinoceptor antagonist. In contrast, the EJP was unaffected by MRS-2179 (2 ,m), a selective P2Y1 receptor antagonist. Aboral NS evoked an apamin- and l -NAME-sensitive IJP, but virtually no NANC EJP. These data suggest the presence of polarized excitatory purinergic neurotransmission in guinea-pig taenia caeci, which appears to be mediated by P2X purinoceptors, most likely the P2X1 subtype. [source] Potassium channels in gastrointestinal smooth muscleAUTONOMIC & AUTACOID PHARMACOLOGY, Issue 4 2000F. Vogalis 1 Electromechanical coupling in smooth muscle serves to coordinate the contractile activity of the syncytium. Electrical activity of smooth muscle of the gut is generated by ionic conductances that regulate and in turn are regulated by the membrane potential of smooth muscle cells. This activity determines the extent of Ca2+ entry into smooth muscle cells, and thus, the timing and intensity of contractions. 2 Potassium channels play an important role in regulating the excitability of the syncytium. The different types of K+ channel are characterized by different sensitivities to membrane potential, to intracellular Ca2+ levels and to modulation by agonists. 3 This review highlights the different types of K+ channels found in gut smooth muscle and describes their possible roles in regulating the electrical activity of the muscle. [source] Activity of corneal nociceptive nerve fibers during allergic challenge of the ocular surfaceACTA OPHTHALMOLOGICA, Issue 2009J GALLAR Purpose The aim of this work was to study in vitro the spontaneous and stimulus-evoked electrical activity of corneal nociceptive nerve fibers during acute allergic inflammation of the ocular surface induced in the guinea-pig. Methods Animals received i.p. 10% ovalbumin (OVA). 14 days later, a 10µl drop of OVA was applied topically to each eye. Blinking and scratching movements directed to the eye were measured during 10 min, and ocular symptoms (edema and hyperemia) and tear rate were measured. Animals were killed afterwards and both eyes were immediately excised and mounted in a superfused (32°C) recording chamber. Electrical activity of corneal sensory receptors was recorded from nerve filaments dissected from the ciliary nerves. Mechanical (calibrated von Frey hairs), thermal (bath solution temperature down to 20°C or up to 52°C), and chemical stimulation (30s-pulses of 98%CO2) were performed. Spontaneous (SA) and stimulus-evoked activity were analyzed. Results After the allergic challenge, eye-scratching behavior was present in 4 out of 15 animals and blinking movements increased from 1±0.05 to 26±5. Tearing also increased compared to control (33±3 vs. 5±1 mm). Compared to naive eyes, proportion of nociceptors with SA (17% vs. 5%) and spontaneous discharge rate (0.13±0.07 vs. 0.01±0.01 imp/s) were increased. Mechanical threshold of mechano-nociceptive units decreased significantly (0.37±0.05 vs. 0.89±0.13 mN). Chemosensitivity of polymodal nociceptors was slightly increased (1.87±0.42 vs. 1.34±0.23 imp/s). Conclusion Changes in corneal sensory nerve activity observed acutely after allergic challenge of the eye surface may constitute the basis of itching and discomfort sensations, and hypersensitivity observed in allergic patients. [source] Regional variations in action potential alternans in isolated murine Scn5a+/, hearts during dynamic pacingACTA PHYSIOLOGICA, Issue 2 2010G. D. K. Matthews Abstract Aim:, Clinical observations suggest that alternans in action potential (AP) characteristics presages breakdown of normal ordered cardiac electrical activity culminating in ventricular arrhythmogenesis. We compared such temporal nonuniformities in monophasic action potential (MAP) waveforms in left (LV) and right ventricular (RV) epicardia and endocardia of Langendorff-perfused murine wild-type (WT), and Scn5a+/, hearts modelling Brugada syndrome (BrS) for the first time. Methods:, A dynamic pacing protocol imposed successively incremented steady pacing rates between 5.5 and 33 Hz. A signal analysis algorithm detected sequences of >10 beats showing alternans. Results were compared before and following the introduction of flecainide (10 ,m) and quinidine (5 ,m) known to exert pro- and anti-arrhythmic effects in BrS. Results:, Sustained and transient amplitude and duration alternans were both frequently followed by ventricular ectopic beats and ventricular tachycardia or fibrillation. Diastolic intervals (DIs) that coincided with onsets of transient (tr) or sustained (ss) alternans in MAP duration (DI*) and amplitude (DI,) were determined. Kruskal,Wallis tests followed by Bonferroni-corrected Mann,Whitney U -tests were applied to these DI results sorted by recording site, pharmacological conditions or experimental populations. WT hearts showed no significant heterogeneities in any DI. Untreated Scn5a+/, hearts showed earlier onsets of transient but not sustained duration alternans in LV endocardium compared with RV endocardium or LV epicardium. Flecainide administration caused earlier onsets of both transient and sustained duration alternans selectively in the RV epicardium in the Scn5a+/, hearts. Conclusion:, These findings in a genetic model thus implicate RV epicardial changes in the arrhythmogenicity produced by flecainide challenge in previously asymptomatic clinical BrS. [source] Calmodulin kinase II initiates arrhythmogenicity during metabolic acidification in murine heartsACTA PHYSIOLOGICA, Issue 1 2009T. H. Pedersen Abstract Aim:, The multifunctional signal molecule calmodulin kinase II (CaMKII) has been associated with cardiac arrhythmogenesis under conditions where its activity is chronically elevated. Recent studies report that its activity is also acutely elevated during acidosis. We test a hypothesis implicating CaMKII in the arrhythmogenesis accompanying metabolic acidification. Methods:, We obtained monophasic action potential recordings from Langendorff-perfused whole heart preparations and single cell action potentials (AP) using whole-cell patch-clamped ventricular myocytes. Spontaneous sarcoplasmic reticular (SR) Ca2+release events during metabolic acidification were investigated using confocal microscope imaging of Fluo-4-loaded ventricular myocytes. Results:, In Langendorff-perfused murine hearts, introduction of lactic acid into the Krebs-Henseleit perfusate resulted in abnormal electrical activity and ventricular tachycardia. The CaMKII inhibitor, KN-93 (2 ,m), reversibly suppressed this spontaneous arrhythmogenesis during intrinsic rhythm and regular 8 Hz pacing. However, it failed to suppress arrhythmia evoked by programmed electrical stimulation. These findings paralleled a CaMKII-independent reduction in the transmural repolarization gradients during acidosis, which previously has been associated with the re-entrant substrate under other conditions. Similar acidification produced spontaneous AP firing and membrane potential oscillations in patch-clamped isolated ventricular myocytes when pipette solutions permitted cytosolic Ca2+ to increase following acidification. However, these were abolished by both KN-93 and use of pipette solutions that held cytosolic Ca2+ constant during acidosis. Acidosis also induced spontaneous Ca2+ waves in isolated intact Fluo-4-loaded myocytes studied using confocal microscopy that were abolished by KN-93. Conclusion:, These findings together implicate CaMKII-dependent SR Ca2+ waves in spontaneous arrhythmic events during metabolic acidification. [source] Roles of glutamate and GABA receptors in setting the developmental timing of spontaneous synchronized activity in the developing mouse cortexDEVELOPMENTAL NEUROBIOLOGY, Issue 12 2007Annette K. McCabe Abstract Spontaneous, synchronized electrical activity (SSA) plays important roles in nervous system development, but it is not clear what causes it to start and stop at the appropriate times. In previous work, we showed that when SSA in neonatal mouse cortex is blocked by TTX in cultured slices during its normal time of occurrence (E17,P3), it fails to stop at P3 as it does in control cultured slices, but instead persists through at least P10. This indicates that SSA is self-extinguishing. Here we use whole-cell recordings and [Ca2+]i imaging to compare control and TTX-treated slices to isolate the factors that normally extinguish SSA on schedule. In TTX-treated slices, SSA bursts average 4 s in duration, and have two components. The first, lasting about 1 s, is mediated by AMPA receptors; the second, which extends the burst to 4 s and is responsible for most of the action potential generation during the burst, is mediated by NMDA receptors. In later stage (P5,P9) control slices, after SSA has declined to about 4% of its peak frequency, bursts lack this long NMDA component. Blocking this NMDA component in P5,P9 TTX-treated slices reduces SSA frequency, but not to the low values found in control slices, implying that additional factors help extinguish SSA. GABAA inhibitors restore SSA in control slices, indicating that the emergence of GABAA -mediated inhibition is another major factor that helps terminate SSA. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source] The effects of age and sex on mental rotation performance, verbal performance, and brain electrical activityDEVELOPMENTAL PSYCHOBIOLOGY, Issue 4 2002Jonathan E. Roberts Abstract This study examined the effects of age and sex on mental rotation performance, verbal performance, and brain-wave activity. Thirty-two 8-year-olds (16 boys) and 32 college students (16 men) had EEG recorded at baseline and while performing four computerized tasks: a two-dimensional (2D) gingerbread man mental rotation, a 2D alphanumeric mental rotation, of three-dimensional (3D) basketball player mental rotation, and lexical decision making. Additionally, participants completed a paper- and pencil water level task and an oral verbal fluency task. On the 2D alphanumeric and 3D basketball player mental rotation tasks, men performed better than boys, but the performance of women and girls did not differ. On the water level task, men performed better than women whereas there was no difference between boys and girls. No sex differences were found on the 2D gingerbread man mental rotation, lexical decision-making, and verbal fluency tasks. EEG analyses indicated that men exhibited left posterior temporal activation during the 2D alphanumeric task and that men and boys both exhibited greater left parietal activation than women and girls during the 2D gingerbread man task. On the 3D basketball player mental rotation task, all participants exhibited greater activation of the right parietal area than the left parietal area. These data give insight into the brain activity and cognitive development changes that occur between childhood and adulthood. © 2002 Wiley Periodicals, Inc. Dev Psychobiol 40: 391,407, 2002. Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/dev.10039 [source] Effect of insulin infusion on electrocardiographic findings following acute myocardial infarction: importance of glycaemic controlDIABETIC MEDICINE, Issue 2 2009R. M. Gan Abstract Aims, To determine the effects of insulin infusion and blood glucose levels during acute myocardial infarction (AMI) on electrocardiographic (ECG) features of myocardial electrical activity. Methods, ECGs at admission and 24 h were examined in a randomized study of insulin infusion vs. routine care for AMI patients with diabetes or hyperglycaemia. Results were analysed according to treatment allocation and also according to average blood glucose level. Results, ECG characteristics were similar at admission in both groups. Patients allocated to conventional treatment had prolongation of the QT interval (QTc) after 24 h but those receiving infused insulin did not. In patients with a mean blood glucose in the first 24 h > 8.0 mmol/l, new ECG conduction abnormalities were significantly more common than in patients with mean blood glucose , 8.0 mmol/l (15.0% vs. 6.0%, P < 0.05). Conclusions, Prevention of QTc prolongation by administration of insulin may reflect a protective effect on metabolic and electrical activity in threatened myocardial tissue. Abnormalities of cardiac electrical conduction may also be influenced by blood glucose. [source] The heterogeneous distribution of functional synaptic connections in rat hippocampal dissociated neuron culturesELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 6 2009Suguru N. Kudoh Abstract The dynamics of functional synaptic connections are critical for information processing systems in the brain, such as perception and learning. Using rat hippocampal cells cultured on multielectrode arrays, we investigated the spatiotemporal pattern of spontaneous action potentials. The neurons developed connections and a characteristic high-frequency bursting (HFB) activity was observed transiently. After the period of HFB activity, the distribution of spontaneous activity changed drastically with the appearance of neurons with frequent electrical activity and neurons with little activity in the network. The functional connections of all the combinations of recorded spike trains were estimated and depicted simultaneously in a Connection Map. This map revealed that each culture contained hublike neurons with many functional connections, suggesting that the cultures of dissociated rat hippocampal neurons on multielectrode arrays formed heterogeneous networks of functional connections. In addition, the functional connections were drastically reorganized after the induction of synaptic potentiation, and novel hub neurons emerged. These results indicate that spontaneous activity is enough to construct dynamic assemblies of neurons connected to each other by functional synaptic connections, and that synaptic potentiation can induce reorganization of such assemblies of neurons. © 2009 Wiley Periodicals, Inc. Electron Comm Jpn, 92(6): 41,49, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecj.10063 [source] Measurement of electrophoretic mobility of cardiomyocytesELECTROPHORESIS, Issue 21 2009Ying Zhou Abstract The electrophoretic mobility (EPM) of rat cardiomyocytes with or without the treatment of neuraminidase was studied by cell electrophoresis. The EPM was found to change over a range from 0 to 8.67,,m,s,1/V,cm,1, depending on ionic strength, transmembrane potential, pH value, and/or surface charges. It is interesting that zero EPM was observed but reverse of the mobility was not. These results suggested that the negative charges carried on the cardiomyocyte surface might comprehensively consist of surface sialic acid, plasmalemma proteins, phospholipids, and transmembrane potential. The aberrant electrical double layer formed between the carried negative charges and adions had a big adsorption layer and a diffusion layer whose sizes changed circularly, making only negative charges be carried on the surface of living cardiomyocytes. The special structures on the surface of cardiomyocytes probably play a considerable role in the process of cardiac electrical activity. [source] High-frequency Oscillations after Status Epilepticus: Epileptogenesis and Seizure GenesisEPILEPSIA, Issue 9 2004Anatol Bragin Summary:,Purpose: To investigate the temporal relation between high-frequency oscillations (HFOs) in the dentate gyrus and recurrent spontaneous seizures after intrahippocampal kainite-induced status epilepticus. Methods: Recording microelectrodes were implanted bilaterally in different regions of hippocampus and entorhinal cortex. A guide cannula for microinjection of kainic acid (KA) was implanted above the right posterior CA3 area of hippocampus. After recording baseline electrical activity, KA (0.4 ,g/0.2 ,l) was injected. Beginning on the next day, electrographic activity was recorded with video monitoring for seizures every day for 8 h/day for ,30 days. Results: Of the 26 rats studied, 19 revealed the appearance of sharp-wave activity and HFOs in the frequency range of 80 to 500 Hz in the dentate gyrus ipsilateral to the KA injection. In the remaining seven rats, no appreciable activity was noted in this frequency range. In some rats with recurrent seizures, HFOs were in the ripple frequency range (100,200 Hz); in others, HFOs were in the fast ripple frequency range (200,500 Hz), or a mixture of both oscillation frequencies was found. The time of detection of the first HFOs after status epilepticus varied between 1 and 30 days, with a mean of 6.3 ± 2.0 (SEM). Of the 19 rats in which HFO activity appeared, all later developed recurrent spontaneous seizures, whereas none of the rats without HFOs developed seizures. The sooner HFO activity was detected after status epilepticus, the sooner the first spontaneous seizure occurred. A significant inverse relation was found between the time to the first HFO detection and the subsequent rate of spontaneous seizures. Conclusions: A strong correlation was found between a decreased time to detection of HFOs and an increased rate of spontaneous seizures, as well as with a decrease in the duration of the latent period between KA injection and the detection of spontaneous seizures. Two types of HFOs were found after KA injection, one in the frequency range of 100 to 200 Hz, and the other, in the frequency range of 200 to 500 Hz, and both should be considered pathological, suggesting that both are epileptogenic. [source] Effects of intravenous lidocaine overdose on cardiac electrical activity and blood pressure in the horseEQUINE VETERINARY JOURNAL, Issue 5 2001G. A. MEYER Summary This study aimed to identify blood serum lidocaine concentrations in the horse which resulted in clinical signs of intoxication, and to document the effects of toxic levels on the cardiovascular and cardiopulmonary systems. Nineteen clinically normal mature horses of mixed breed, age and sex were observed. Lidocaine administration was initiated in each subject with an i.v. loading dose of 1.5 mg/kg bwt and followed by continuous infusion of 0.3 mg/kg bwt/min until clinical signs of intoxication were observed. Intoxication was defined as the development of skeletal muscle tremors. Prior to administration of lidocaine, blood samples for lidocaine analysis, heart rate, mean arterial blood pressure, systolic blood pressure, diastolic blood pressure, respiratory rate and electrocardiographic (ECG) data were collected. After recording baseline data, repeat data were collected at 5 min intervals until signs of intoxication were observed. The range of serum lidocaine concentrations at which the clinical signs of intoxication were observed was 1.85,4.53 ,g/ml (mean ± s.d. 3.24 ± 0.74 ,g/ml). Statistically significant changes in P wave duration, P-R interval, R-R interval and Q-T interval were observed in comparison to control values, as a result of lidocaine administration. These changes in ECG values did not fall outside published normal values and were not clinically significant. Heart rate, blood pressures and respiratory rates were unchanged from control values. This study establishes toxic serum lidocaine levels in the horse, and demonstrates that there were no clinically significant cardiovascular effects with serum lidocaine concentrations less than those required to produce signs of toxicity. [source] The Status of Bedside Ultrasonography Training in Emergency Medicine Residency ProgramsACADEMIC EMERGENCY MEDICINE, Issue 1 2003Francis L. Counselman MD Abstract Bedside ultrasonography (BU) is rapidly being incorporated into emergency medicine (EM) training programs and clinical practice. In the past decade, several organizations in EM have issued position statements on the use of this technology. Program training content is currently driven by the recently published "Model of the Clinical Practice of Emergency Medicine," which includes BU as a necessary skill. Objective: The authors sought to determine the current status of BU training in EM residency programs. Methods: A survey was mailed in early 2001 to all 122 Accreditation Council for Graduate Medical Education (ACGME)-accredited EM residency programs. The survey instrument asked whether BU was currently being taught, how much didactic and hands-on training time was incorporated into the curriculum, and what specialty representation was present in the faculty instructors. In addition, questions concerning the type of tests performed, the number considered necessary for competency, the role of BU in clinical decision making, and the type of quality assurance program were included in the survey. Results: A total of 96 out of 122 surveys were completed (response rate of 79%). Ninety-one EM programs (95% of respondents) reported they teach BU, either clinically and/or didactically, as part of their formal residency curriculum. Eighty-one (89%) respondents reported their residency program or primary hospital emergency department (ED) had a dedicated ultrasound machine. BU was performed most commonly for the following: the FAST scan (focused abdominal sonography for trauma, 79/87%); cardiac examination (for tamponade, pulseless electrical activity, etc., 65/71%); transabdominal (for intrauterine pregnancy, ectopic pregnancy, etc., 58/64%); and transvaginal (for intrauterine pregnancy, ectopic pregnancy, etc., 45/49%). One to ten hours of lecture on BU was provided in 43%, and one to ten hours of hands-on clinical instruction was provided in 48% of the EM programs. Emergency physicians were identified as the faculty most commonly involved in teaching BU to EM residents (86/95%). Sixty-one (69%) programs reported that EM faculty and/or residents made clinical decisions and patient dispositions based on the ED BU interpretation alone. Fourteen (19%) programs reported that no formal quality assurance program was in place. Conclusions: The majority of ACGME-accredited EM residency programs currently incorporate BU training as part of their curriculum. The majority of BU instruction is done by EM faculty. The most commonly performed BU study is the FAST scan. The didactic component and clinical time devoted to BU instruction are variable between programs. Further standardization of training requirements between programs may promote increasing standardization of BU in future EM practice. [source] Spatial QRS-T angle: association with diabetes and left ventricular performanceEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 9 2006Ch. Voulgari Abstract Background, The spatial QRS-T angle obtained by vectorcardiography is a combined measurement of the electrical activity of the heart and predicts cardiovascular morbidity and mortality. Disturbances in repolarization and depolarization are common in diabetes. No data, however, exist on the effect of diabetes on QRS-T angle. In this study we examined differences in QRS-T angle between type 2 diabetic and non-diabetic subjects; in addition, the potential relationship between QRS-T angle and left ventricular performance as well as glycaemic control were also examined. Patients and methods, A total of 74 subjects with type 2 diabetes and 74 non-diabetic individuals, matched for age and sex with the diabetic subjects were examined. All subjects were free of clinically apparent macrovascular complications. Spatial vectorcardiogaphic descriptors of ventricular depolarization and repolarization were reconstructed from the 12-electrocardiographic leads using a computer-based electrocardiogram. Left ventricular mass and performance were measured using M-mode and Doppler echocardiography. Results, QRS-T angle values were higher (by almost 2-fold) in the diabetic in comparison with the non-diabetic subjects (P < 0·001). After multivariate adjustment, QRS-T angle was independently associated with age (P = 0·01), HbA1c (P = 0·003), and low-density lipoprotein cholesterol levels (P = 0·04) in the non-diabetic, and with HbA1c (P = 0·03) as well as Tei index (P = 0·003) in the diabetic subjects. Conclusions, The spatial QRS-T angle is high in subjects with type 2 diabetes and is associated with glycaemic control and left ventricular performance. The prognostic importance of the higher spQRS-T angle values in subjects with diabetes remains to be evaluated in prospective studies. [source] N -methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine (MBDB): its properties and possible risksADDICTION BIOLOGY, Issue 3 2000L. A. G. J. M. Van Aerts MBDB (N -methyl-1-(1,3-benzodioxol-5-yl)-2-aminobutane) is the ,-ethyl homologue of MDMA (3,4-methylenedioxy-N-methylamphetamine). MBDB is metabolized and excreted similarly to MDMA: presumably, the majority of oral MBDB is excreted in urine unmetabolized. The main metabolic routes in man are thought to be O-dealkylation and subsequent methylation, sulphation and glucuronidation of the newly formed hydroxy groups. The major acute neuropharmacological effects of MBDB in the rat are an increase in serotonin release in the brain and an inhibition of serotonin and noradrenaline re-uptake. These effects compare well with those of MDMA, although the latter is more potent. MBDB may also slightly increase dopamine release and inhibit dopamine re-uptake, but to a lesser extent than MDMA. This is important, as dopamine release has been implicated in the reinforcing qualities of substances such as cocaine and amphetamine. The neuroendocrine effects of MBDB resemble those of MDMA. Both substances increase plasma ACTH, corticosterone, prolactin and renin. The neurophysiological effects of MBDB are characterized by a decrease in electrical activity throughout the brain, most notably in the alpha 2 and delta frequency bands. In contrast, hallucinogens increase the activity in the alpha 1 band, especially in the corpus striatum. In drug discrimination tests in the rat, MBDB, like MDMA, can be distinguished clearly from both stimulants and hallucinogens. The class of substances to which MBDB belongs may be named entactogens. MBDB dose-dependently increases locomotor activity and decreases exploratory behaviour in the rat and causes distress vocalization and wing extension in the newly hatched chicken. The rewarding properties of MBDB appear to be smaller than those of MDMA, as suggested by a 2.5 times weaker potency in the conditioned place preference test in rats. The main subjective effects of MBDB in man are a pleasant state of introspection, with greatly facilitated interpersonal communication and a pronounced sense of empathy and compassion between subjects. In this respect, MBDB again resembles MDMA. However, there are also differences. MBDB has a slower and more gentle onset of action than MDMA, produces less euphoria and has less stimulant properties. The few toxicological data available suggest that MBDB may cause serotonergic deficits in the brain, although the potency of MBDB to cause this neurotoxic effect is smaller than that of MDMA. Severe acute reactions in man as have been reported for MDMA have not been published for MBDB. The dependence potential of MBDB appears to be small, probably even smaller than that of MDMA. MBDB has been available at least since 1994 but its position on the synthetic drugs market is marginal. Subjective reports indicate that MBDB is less popular among users than MDMA. The reason may be that MBDB produces less euphoria than MDMA. Another possible explanation is that MBDB largely lacks the stimulant properties of MDMA. We calculated a margin of safety with a method similar to one used in the risk assessment of pharmaceuticals. The results suggest that MBDB is three times less likely to cause serotonergic brain deficits than MDMA. However, it should be noted that for both substances the margin of safety is less than one, indicating that the risk of neurotoxicity is not negligible. In animals, serotonergic brain deficits after exposure to MDMA have been linked to the degeneration of serotonergic nerve terminals. [source] The patterns of spontaneous Ca2+ signals generated by ventral spinal neurons in vitro show time-dependent refinementEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009Sara Sibilla Abstract Embryonic spinal neurons maintained in organotypic slice culture are known to mimic certain maturation-dependent signalling changes. With such a model we investigated, in embryonic mouse spinal segments, the age-dependent spatio-temporal control of intracellular Ca2+ signalling generated by neuronal populations in ventral circuits and its relation with electrical activity. We used Ca2+ imaging to monitor areas located within the ventral spinal horn at 1 and 2 weeks of in vitro growth. Primitive patterns of spontaneous neuronal Ca2+ transients (detected at 1 week) were typically synchronous. Remarkably, such transients originated from widespread propagating waves that became organized into large-scale rhythmic bursts. These activities were associated with the generation of synaptically mediated inward currents under whole-cell patch-clamp. Such patterns disappeared during longer culture of spinal segments: at 2 weeks in culture, only a subset of ventral neurons displayed spontaneous, asynchronous and repetitive Ca2+ oscillations dissociated from background synaptic activity. We observed that the emergence of oscillations was a restricted phenomenon arising together with the transformation of ventral network electrophysiological bursting into asynchronous synaptic discharges. This change was accompanied by the appearance of discrete calbindin immunoreactivity against an unchanged background of calretinin-positive cells. It is attractive to assume that periodic oscillations of Ca2+ confer a summative ability to these cells to shape the plasticity of local circuits through different changes (phasic or tonic) in intracellular Ca2+. [source] Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007Clare Guilding Abstract The suprachiasmatic nucleus of the hypothalamus (SCN) is the master circadian pacemaker or clock in the mammalian brain. Canonical theory holds that the output from this single, dominant clock is responsible for driving most daily rhythms in physiology and behaviour. However, important recent findings challenge this uniclock model and reveal clock-like activities in many neural and non-neural tissues. Thus, in addition to the SCN, a number of areas of the mammalian brain including the olfactory bulb, amygdala, lateral habenula and a variety of nuclei in the hypothalamus, express circadian rhythms in core clock gene expression, hormone output and electrical activity. This review examines the evidence for extra-SCN circadian oscillators in the mammalian brain and highlights some of the essential properties and key differences between brain oscillators. The demonstration of neural pacemakers outside the SCN has wide-ranging implications for models of the circadian system at a whole-organism level. [source] Developmental expression of Na+ currents in mouse Purkinje neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2006Mark Fry Abstract As Purkinje neurons mature during postnatal development, they change from electrically quiescent to active and exhibit high frequency spontaneous action potentials. This change in electrical activity is determined by both alteration in ion channel expression and the acquisition of synaptic input. To gain a better understanding of the development the intrinsic electrical properties of these neurons, acutely isolated Purkinje neurons from mice aged postnatal day 4 (P4) to P18 were examined. This included recording action potential frequency, threshold, height and slope, and input resistance and capacitance. Changes in a number of these properties were observed, suggesting significant changes in voltage-gated Na+ currents. Because voltage-gated Na+ currents, including the transient, resurgent and persistent currents, are known to play important roles in generating spontaneous action potentials, the developmental changes in these currents were examined. A large increase in the density of transient current, resurgent current and persistent current was observed at times corresponding with changes in action potential properties. Interestingly, the developmental up-regulation of the persistent current and resurgent current occurred at rate which was faster than the up-regulation of the transient current. Moreover, the relative amplitudes of the persistent and resurgent currents increased in parallel, suggesting that they share a common basis. The data indicate that developmental up-regulation of Na+ currents plays a key role in the acquisition of Purkinje neuron excitability. [source] In vivo optical recordings of synaptic transmission and intracellular Ca2+ and Cl, in the superior colliculus of fetal ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2006Yoshiyuki Sakata Abstract Although the N -methyl- d -aspartate (NMDA) receptor is known to play a crucial role in activity-dependent remodeling of synaptic connections in the fetal superior colliculus (SC), its contribution to the electrical activity of fetal SC neurons has not been determined. Furthermore, whether ,-aminobutyric acid (GABA)-mediated inhibition occurs either as early as prenatal periods or only after eye opening has been controversial. We therefore performed optical recordings using voltage-, Ca2+ - and Cl, -sensitive fluorescent dyes to analyse synaptic transmission and changes in intracellular Ca2+ and Cl, in the SC of fetal rats that were still connected with the dams by the umbilical cord. Excitatory and inhibitory responses were evoked by focal SC stimulation. The excitatory synaptic responses are composed of early and late components. The early component was mediated by both non-NMDA and NMDA receptors, whereas the late component occurred mainly via NMDA receptors. Train pulse stimulation at higher currents was required for induction of the inhibition, which was antagonized by bicuculline, and blocking of the GABA-mediated inhibition by bicuculline uncovered masked excitatory synaptic responses. Focal SC stimulation induced increases in [Cl,]i and [Ca2+]i that were mediated by GABA-A receptors and mainly by NMDA receptors, respectively. GABA antagonists augmented SC-induced increases in [Ca2+]i. These results indicate that, in the fetal SC, excitatory and inhibitory synaptic transmissions occur before birth, that the NMDA receptor is a major contributor to excitatory synaptic transmission and increased [Ca2+]i, and that the GABA-A receptor is already functioning to inhibit excitatory neurotransmission. [source] Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damageEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006Jose L. Perez Velazquez Abstract While there is evidence that gap junctions play important roles in the determination of cell injuries, there is not much known about mechanisms by which gap junctional communication may exert these functions. Using a global model of transient ischaemia in rats, we found that pretreatment with the gap junctional blockers carbenoxolone, 18,-glycyrrhetinic acid and endothelin, applied via cannulae implanted into the hippocampus in one hemisphere, resulted in decreased numbers of TUNEL-positive neurons, as compared with the contralateral hippocampus that received saline injection. Post-treatment with carbenoxolone for up to 30 min after the stroke injury still resulted in decreased cell death, but post-treatment at 90 min after the ischaemic insult did not result in differences in cell death. However, quinine, an inhibitor of Cx36-mediated gap junctional coupling, did not result in appreciable neuroprotection. Searching for a possible mechanism for the observed protective effects, possible actions of the gap junctional blockers in the electrical activity of the hippocampus during the ischaemic insult were assessed using intracerebral recordings, with no differences observed between the saline-injected and the contralateral drug-injected hippocampus. However, a significant reduction in lipid peroxides, a measure of free radical formation, in the hippocampus treated with carbenoxolone, revealed that the actions of gap junctional coupling during injuries may be causally related to oxidative stress. These observations suggest that coupling in glial networks may be functionally important in determining neuronal vulnerability to oxidative injuries. [source] Activity-dependent subcellular localization of NAC1EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2005Laxman Korutla Abstract The expression of the transcriptional regulator NAC1 is increased in the nucleus accumbens of rats withdrawn from cocaine self-administration, and in vivo studies indicate that the up-regulation is a compensatory mechanism opposing the acute effects of cocaine. Both mammalian two-hybrid assay and punctate localization largely in the nucleus suggest NAC1 is a transcriptional regulator. However, in this report it is shown that in differentiated PC12 and Neuro2A cells, as well as in primary cortical neurons, NAC1 is diffusely expressed not only in the cell nucleus but also in cytoplasm. Blockade of spontaneous electrical activity by tetrodotoxin prevented the diffuse expression of NAC1, and depolarization with high potassium concentrations induced diffuse cellular localization in non-differentiating cells. The use of protein kinase C (PKC) inhibitors and activator, as well as the systematic mutation of potential PKC phosphorylation sites in NAC1, demonstrated that phosphorylation of residue S245 by PKC is a necessary event inducing diffuse NAC1 expression outside of the nucleus. These observations indicate a potential non-transcriptional role for NAC1 in the brain. [source] Spontaneous electrical activity and dendritic spine size in mature cerebellar Purkinje cellsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2005Robin J. Harvey Abstract Previous experiments have shown that in the mature cerebellum both blocking of spontaneous electrical activity and destruction of the climbing fibres by a lesion of the inferior olive have a similar profound effect on the spine distribution on the proximal dendrites of the Purkinje cells. Many new spines develop that are largely innervated by parallel fibers. Here we show that blocking electrical activity leads to a significant decrease in size of the spines on the branchlets. We have also compared the size of the spines of the proximal dendritic domain that appear during activity block and after an inferior olive lesion. In this region also, the spines in the absence of activity are significantly smaller. In the proximal dendritic domain, the new spines that develop in the absence of activity are innervated by parallel fibers and are not significantly different in size from those of the branchlets, although they are shorter. Thus, the spontaneous activity of the cerebellar cortex is necessary not only to maintain the physiological spine distribution profile in the Purkinje cell dendritic tree, but also acts as a signal that prevents spines from shrinking. [source] Glutamatergic input governs periodicity and synchronization of bursting activity in oxytocin neurons in hypothalamic organotypic culturesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003Jean-Marc Israel Abstract During suckling, oxytocin (OT) neurons display a bursting electrical activity, consisting of a brief burst of action potentials which is synchronized throughout the OT neuron population and which periodically occurs just before each milk ejection in the lactating rat. To investigate the basis of such synchronization, we performed simultaneous intracellular recordings from pairs of OT neurons identified retrospectively by intracellular fluorescent labelling and immunocytochemistry in organotypic slice cultures derived from postnatal rat hypothalamus. A spontaneous bursting activity was recorded in 65% of OT neurons; the remaining showed only a slow, irregular activity. Application of OT triggered bursts in nonbursting neurons and accelerated bursting activity in spontaneously bursting cells. These cultures included rare vasopressinergic neurons showing no bursting activity and no reaction to OT. Bursts occurred simultaneously in all pairs of bursting OT neurons but, as in vivo, there were differences in burst onset, amplitude and duration. Coordination of firing was not due to electrotonic coupling because depolarizing one neuron in a pair had no effect on the membrane potential of its partner and halothane and proprionate did not desynchronize activity. On the other hand, bursting activity was superimposed on volleys of excitatory postsynaptic potentials (EPSPs) which occurred simultaneously in pairs of neurons. EPSPs, and consequently action potentials, were reversibly blocked by the non-NMDA glutamatergic receptor antagonist CNQX. Taken together, these data, obtained from organotypic cultures, strongly suggest that a local hypothalamic network governs synchronization of bursting firing in OT neurons through synchronous afferent volleys of EPSPs originating from intrahypothalamic glutamatergic inputs. [source] Taurine selectively modulates the secretory activity of vasopressin neurons in conscious ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2001Mario Engelmann Abstract Previous experiments have shown that a 10-min forced swimming session triggers the release of vasopressin from somata and dendrites, but not axon terminals, of neurons of the hypothalamic,neurohypophysial system. To further investigate regulatory mechanisms underlying this dissociated release, we forced male Wistar rats to swim in warm (20 °C) water and monitored release of the potentially inhibitory amino acids gamma amino butyric acid (GABA) and taurine into the hypothalamic supraoptic nucleus using microdialysis. Forced swimming caused a significant increase in the release of taurine (up to 350%; P < 0.05 vs. prestress release), but not GABA. To reveal the physiological significance of centrally released taurine, the specific taurine antagonist 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide was administered into the supraoptic nucleus via retrodialysis. Administration of this antagonist caused a significant increase in the release of vasopressin within the supraoptic nucleus and into the blood both under basal conditions and during stress (up to 800%; P < 0.05 vs. basal values), without affecting hypothalamic or plasma oxytocin. Local administration of the GABAA receptor antagonist bicuculline, in contrast, failed to influence vasopressin secretion at either time point. In a separate series of in vivo electrophysiological experiments, administration of the same dosage of the taurine antagonist into the supraoptic nucleus via microdialysis resulted in an increased electrical activity of identified vasopressinergic, but not oxytocinergic, neurons. Taken together our data demonstrate that taurine is released within the supraoptic nucleus during physical/emotional stress. Furthermore, at the level of the supraoptic nucleus, taurine inhibits not only the electrical activity of vasopressin neurons but also acts as an inhibitor of both central and peripheral vasopressin secretion during different physiological states. [source] Phase-coupled oscillator models can predict hippocampal inhibitory synaptic connectionsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2001F. K. Skinner Abstract What factors are responsible for propagating electrical activity in the hippocampus? Using an intact, isolated hippocampus preparation, it is possible to observe spontaneous delta (, 4 Hz) waves of rhythmic field potentials. These rhythmic potentials are inhibitory in nature, mediated by GABAergic inhibitory potentials originating from a population of principal neurons. They start in the ventro-temporal region and move longitudinally towards the dorso-septal region with a phase lag of , 10% between the extracellular recordings. We use the mathematical framework of phase-coupled oscillators (PCO) to gain some insight into the underlying network system. A chain of 15 nearest-neighbour bidirectionally coupled PCOs is used where each oscillator refers to a segment of the CA1 region of the hippocampus that can generate these slow field potentials. We find that ventro-dorsal delta waves exist if there is a dominance in coupling strength in one direction. Without a one-way coupling dominance, ventro-dorsal waves can still exist, but then the coupling strengths need to be much larger. The relationship between entrained and intrinsic frequencies and the variation of propagation speeds along the longitudinal axis can be used to determine which case applies. Currently available experimental data supports one of the cases, predicting that there is a stronger ventral to dorsal inhibitory effect. [source] Long-lasting hippocampal potentiation and contextual memory consolidationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2001Benedetto Sacchetti Abstract In order to ascertain whether there are hippocampal electrophysiological modifications specifically related to memory, exploratory activity and emotional stress, extracellular electrical activity was recorded in hippocampal slices prepared from the brains of male adult rats. Several groups of animals were employed: (i) rats which had freely explored the experimental apparatus (8 min exposure); (ii) rats which had been subjected, in the same apparatus, to a fear conditioning paradigm training entailing the administration of aversive electrical footshocks (8 min exposure); (iii) rats to which the same number of aversive shocks had been administered in the same apparatus, but temporally compressed so as to make difficult the association between painful stimuli and the apparatus (30 s exposure); (iv) naïve rats never placed in the apparatus. Half of the rats from each treatment group were used for retrieval testing and the other half for hippocampal excitability testing. The conditioned freezing response was exhibited for no less than 4 weeks. Hippocampal excitability was measured by means of input,output curves (IOC) and paired-pulse facilitation curves (PPF). Retrieval testing or brain slices preparation were performed at increasing delays after the training sessions: immediately afterwards or after 1, 7 or 28 days. Only the rats subjected to the fear conditioning training exhibited freezing when placed again in the apparatus (retrieval testing). It was found that IOCs, with respect to naïve rats, increased in the conditioned animals up to the 7-day delay. In free exploration animals the IOCs increased only immediately after the training session. In all other rats no modification of the curves was observed. IOC increases do not appear to imply presynaptic transmitter release modifications, because they were not accompanied by PPF modifications. In conclusion, a clear-cut correlation was found between the increase in excitability of the Schaffer collateral,CA1 dendrite synapses and freezing response consolidation. [source] |