Home About us Contact | |||
Electric Field Gradient (electric + field_gradient)
Selected AbstractsRed blood cell quantification microfluidic chip using polyelectrolytic gel electrodesELECTROPHORESIS, Issue 9 2009Kwang Bok Kim Abstract This paper reports on a novel microfluidic chip with polyelectrolytic gel electrodes (PGEs) used to rapidly count the number of red blood cells (RBCs) in diluted whole blood. The proposed microdevice is based on the principle that the impedance across a microchannel between two PGEs varies sensitively as RBCs pass through it. The number and amplitude of impedance peaks provide the information about the number and size of RBCs, respectively. This system features a low-voltage dc detection method and non-contact condition between cells and metal electrodes. Major advantages include stable detection under varying cellular flow rate and position in the microchannel, little chance of cell damage due to high electric field gradient and no surface fouling of the metal electrodes. The performance of this PGEs-based system was evaluated in three steps. First, in order to observe the size-only dependence of the impedance signal, three different sizes of fluorescent microbeads (7.2, 10.0, and 15.0,,m; Bangs laboratories, USA) were used in the experiment. Second, the cell counting performance was evaluated by using 7.2,,m fluorescent microbeads, similar in size to RBCs, in various concentrations and comparing the results with an animal hematoanalyzer (MS 9-5; Melet schloesing laboratories, France). Finally, in human blood sample tests, intravenously collected whole blood was just diluted in a PBS without centrifuge or other pretreatments. The PGE-based system produced almost identical number of RBCs in over 800-fold diluted samples to the results from a commercialized human hematoanalyzer (HST-N402XE; Sysmex, Japan). [source] Characterization of voltage degradation in dynamic field gradient focusingELECTROPHORESIS, Issue 5 2008Jeffrey M. Burke Abstract Dynamic field gradient focusing (DFGF) is an equilibrium gradient method that utilizes an electric field gradient to simultaneously separate and concentrate charged analytes based on their individual electrophoretic mobilities. This work describes the use of a 2-D nonlinear, numerical simulation to examine the impact of voltage loss from the electrodes to the separation channel, termed voltage degradation, and distortions in the electric field on the performance of DFGF. One of the design parameters that has a large impact on the degree of voltage degradation is the placement of the electrodes in relation to the separation channel. The simulation shows that a distance of about 3,mm from the electrodes to the separation channel gives the electric field profile with least amount of voltage degradation. The simulation was also used to describe the elution of focused protein peaks. The simulation shows that elution under constant electric field gradient gives better performance than elution through shallowing of the electric field. Qualitative agreement between the numerical simulation and experimental results is shown. The simulation also illustrates that the presence of a defocusing region at the cathodic end of the separation channel causes peak dispersion during elution. The numerical model is then used to design a system that does not suffer from a defocusing region. Peaks eluted under this design experienced no band broadening in our simulations. Preliminary experimental results using the redesigned chamber are shown. [source] A computational NQR study on the hydrogen-bonded lattice of cytosine-5-acetic acidJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 5 2008Mahmoud Mirzaei Abstract A computational study at the level of density functional theory (DFT) employing 6-311++G** standard basis set was carried out to evaluate nuclear quadrupole resonance (NQR) spectroscopy parameters in cytosine-5-acetic acid (C5AA). Since the electric field gradient (EFG) tensors are very sensitive to the electrostatic environment at the sites of quadruple nuclei, the most possible interacting molecules with the target one were considered in a five-molecule model system of C5AA using X-ray coordinates transforming. The hydrogen atoms positions were optimized and two model systems of original and H-optimized C5AA were considered in NQR calculations. The calculated EFG tensors at the sites of 17O, 14N, and 2H nuclei were converted to their experimentally measurable parameters, quadrupole coupling constants and asymmetry parameters. The evaluated NQR parameters reveal that the nuclei in original and H-optimized systems contribute to different hydrogen bonding (HB) interaction. The comparison of calculated parameters between optimized isolated gas-phase and crystalline monomer also shows the relationship between the structural deformation and NQR parameters in C5AA. The basis set superposition error (BSSE) calculations yielded no significant errors for employed basis set in the evaluation of NQR parameters. All the calculations were performed by Gaussian 98 package of program. © 2007 Wiley Periodicals, Inc. J Comput Chem 2008 [source] Nonlinear modeling of protein separation in a preparative-scale dynamic field gradient focusing instrumentAICHE JOURNAL, Issue 1 2009Noah I. Tracy Abstract Dynamic field gradient focusing (DFGF) uses an electric field gradient opposed by a counter-flow of buffer to separate milligrams of proteins according to their electrophoretic mobilities. A nonlinear model of protein separation in a preparative-scale DFGF device was developed to aid in refining the instrument's design and finding optimal run conditions prior to performing experiments. The model predicted the focal points of bovine serum albumin (BSA), and bovine hemoglobin (Hb) to within the 95% confidence intervals about the means of the experimental values. The resolution between the proteins in the model was 2.08, which was 3% less than the lower limit of the 95% confidence interval about the experimental value. The model predicted 67% more dispersion than was present in the experimental device, which made the simulated BSA peak 22% wider than the experimentally measured width. © 2008 American Institute of Chemical Engineers AIChE J, 2009 [source] Solid-state NMR characterization of 69Ga and 71Ga in crystalline solidsMAGNETIC RESONANCE IN CHEMISTRY, Issue 9 2006Jason T. Ash Abstract Gallium model systems containing four- and six-coordinate gallium sites have been investigated using solid-state NMR. Measurement of the isotropic chemical shift and electric field gradient (EFG) have been performed at 9.4 T on ,-Ga2O3, ,-Ga2O3, LiGaO2, NaGaO2, KGaO2, Ga2(SO4)3, and LaGaO3 using a variety of techniques on both NMR active nuclei (69Ga and 71Ga) including static, high speed magic-angle spinning (MAS), satellite transition (ST) spectroscopy, and rotor-assisted population transfer (RAPT). The chemical shift is found to correlate well with the coordination number, with four-coordinate gallium having values of approximately 50 ppm and six-coordinate gallium having values near 225 ppm (referenced to 1 M gallium nitrate solution). The magnitude of the EFG is found to be correlated to the distortion of the gallium polyhedra, with the strained systems having EFGs of 3 × 1021 Vm,2 or more, while the less strained systems have values of 1.5 × 1021 Vm,2 or less. A plot of chemical shift versus EFG suggests that solid-state NMR of gallium oxyanions can be more discriminating than liquid state NMR chemical shifts alone. Copyright © 2006 John Wiley & Sons, Ltd. [source] Solid-state NMR spectroscopy of the quadrupolar halogens: chlorine-35/37, bromine-79/81, and iodine-127MAGNETIC RESONANCE IN CHEMISTRY, Issue 4 2006David L. Bryce Abstract A thorough review of 35/37Cl, 79/81Br, and 127I solid-state nuclear magnetic resonance (SSNMR) data is presented. Isotropic chemical shifts (CS), quadrupolar coupling constants, and other available information on the magnitude and orientation of the CS and electric field gradient (EFG) tensors for chlorine, bromine, and iodine in diverse chemical compounds is tabulated on the basis of over 200 references. Our coverage is through July 2005. Special emphasis is placed on the information available from the study of powdered diamagnetic solids in high magnetic fields. Our survey indicates a recent notable increase in the number of applications of solid-state quadrupolar halogen NMR, particularly 35Cl NMR, as high magnetic fields have become more widely available to solid-state NMR spectroscopists. We conclude with an assessment of possible future directions for research involving 35/37Cl, 79/81Br, and 127I solid-state NMR spectroscopy. Copyright © 2006 John Wiley & Sons, Ltd. [source] Response to Spackman's comment on On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom modelACTA CRYSTALLOGRAPHICA SECTION A, Issue 2 2007Philip Coppens First page of article [source] Density-functional computation of 53Cr NMR chemical shiftsMAGNETIC RESONANCE IN CHEMISTRY, Issue 7 2006Michael Bühl Abstract 53Cr chemical shifts of CrO42,, Cr2O72,, CrO3X,, CrO2X2(X = F, Cl), and Cr(CO)5L (L = CO, PF3, CHNH2, CMeNMe2) are computed, using geometries optimized with the gradient-corrected BP86 density functional, at the gauge-including atomic orbitals (GIAO)-, BPW91-, and B3LYP levels. For this set of compounds, substituent effects on ,(53Cr) are better described with the pure BPW91 functional than with B3LYP, in contrast to most other transition-metal chemical shifts studied so far. For selected cases, 53Cr NMR line widths can be rationalized in terms of electric field gradients (EFGs) computed with the BPW91 functional, but in general other factors such as molecular correlation times appear to be dominating. 53Cr chemical shifts and EFGs are predicted for CrO3, Cr(C6H6)2, Cr(C6H6)CO3, and, with reduced reliability, for Cr2(µ2 -O2CH)4. Copyright © 2006 John Wiley & Sons, Ltd. [source] Strong spin relaxation length dependence on electric field gradientsPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 12 2006D. Csontos Abstract We discuss the influence of electrical effects on spin transport, and in particular the propagation and relaxation of spin polarized electrons in the presence of inhomogeneous electric fields. We show that the spin relaxation length strongly depends on electric field gradients, and that significant suppression of electron spin polarization can occur as a result thereof. A discussion in terms of a drift-diffusion picture, and selfconsistent numerical calculations based on a Boltzmann-Poisson approach shows that the spin relaxation length in fact can be of the order of the charge screening length. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |