Ellenberg Indicator Values (ellenberg + indicator_value)

Distribution by Scientific Domains


Selected Abstracts


Spatial and temporal analysis of vegetation mosaics for conservation: poor fen communities in a Cornish valley mire

JOURNAL OF BIOGEOGRAPHY, Issue 9 2003
E. J. Southall
Abstract Aim Biogeographers increasingly realize the importance of seeing plant communities as spatial mosaics and understanding the spatial and temporal heterogeneity of a site is often a key to successful conservation. The aim of this paper is to examine the approaches to the description and analysis of spatial and temporal variation in sub-communities within patch mosaics of vegetation in order to inform conservation management. The activities of the tin streaming industry in Cornwall over the last century have created a highly varied mosaic of poor fen vegetation on Goss Moor National Nature Reserve (NNR). The wetland mosaics comprise dry hummocks and different sized wet pools. The size and depth of the pools determines the rate and type of vegetation that develops, as does the nature of boundary or edge. The ergodic hypothesis is used to describe the various plant sub-communities and their boundaries to identify pathways of hydroseral succession. A further aim was to test the use of Ellenberg Indicator (EI) values as a tool for the rapid description of spatial and temporal environmental change on wetland sites with a view to their management. Location Goss Moor National Nature Reserve, Cornwall, UK. Methods An extensive survey of the whole wetland complex was undertaken to identify patches of poor fen vegetation containing Potentilla palustris (L.) Scop. and Menyanthes trifoliata L. At each patch, species abundance data were collected as well as associated environmental information such as depth of the organic layer and standing water depth, patch location, patch size and boundary type. The plant sub-communities present were defined using techniques of numerical classification [two-way indicator species analysis (twinspan)] and ordination [detrended correspondence analysis (DCA)] and these were ordered using the ergodic hypothesis in order to characterize the stages of the hydrosere. Floristic and environmental relationships were examined using canonical correspondence analysis (CCA). Further environmental differences between the poor fen sub-community types were characterized by weighted EI values for acidity (R), moisture (F), nitrogen (N) and light (L). Results and conclusions Twelve poor fen sub-community types were described and found to be distributed along a primary environmental gradient of organic matter depth, surface water height and bare substrate. Separation of the poor fen communities by a moisture gradient was considered as spatial evidence for hydroseral succession, which begins with the colonization of open-water pools created by tin excavations. High water levels were associated with the swamp communities, increased organic depth was associated with poor fen, and the type of boundary was shown to affect the resulting community composition. Weighted Community Ellenberg Indicator values for nitrogen, light, reaction and moisture are recommended as an effective tool for indicating differences between plant (sub-)communities. The importance of examining sub-community mosaics in the study of hydroseral development is stressed and the manner in which both sets of information may be used to underpin the conservation management of the site is demonstrated. [source]


Influence of slope and aspect on long-term vegetation change in British chalk grasslands

JOURNAL OF ECOLOGY, Issue 2 2006
JONATHAN BENNIE
Summary 1,The species composition of fragmented semi-natural grasslands may change over time due to stochastic local extinction and colonization events, successional change and/or as a response to changing management or abiotic conditions. The resistance of vegetation to change may be mediated through the effects of topography (slope and aspect) on soils and microclimate. 2,To assess long-term vegetation change in British chalk grasslands, 92 plots first surveyed by F. H. Perring in 1952,53, and distributed across four climatic regions, were re-surveyed during 2001,03. Changes in vegetation since the original survey were assessed by comparing local colonization and extinction rates at the plot scale, and changes in species frequency at the subplot scale. Vegetation change was quantified using indirect ordination (Detrended Correspondence Analysis; DCA) and Ellenberg indicator values. 3,Across all four regions, there was a significant decrease in species number and a marked decline in stress-tolerant species typical of species-rich calcareous grasslands, both in terms of decreased plot occupancy and decreased frequency within occupied plots. More competitive species typical of mesotrophic grasslands had colonized plots they had not previously occupied, but had not increased significantly in frequency within occupied plots. 4,A significant increase in Ellenberg fertility values, which was highly correlated with the first DCA axis, was found across all regions. The magnitude of change of fertility and moisture values was found to decrease with angle of slope and with a topographic solar radiation index derived from slope and aspect. 5,The observed shift from calcareous grassland towards more mesotrophic grassland communities is consistent with the predicted effects of both habitat fragmentation and nutrient enrichment. It is hypothesized that chalk grassland swards on steeply sloping ground are more resistant to invasion by competitive grass species than those on flatter sites due to phosphorus limitation in shallow minerogenic rendzina soils, and that those with a southerly aspect are more resistant due to increased magnitude and frequency of drought events. [source]


Stratified resampling of phytosociological databases: some strategies for obtaining more representative data sets for classification studies

JOURNAL OF VEGETATION SCIENCE, Issue 4 2005
Ilona Knollová
Abstract Question: The heterogeneous origin of the data in large phytosociological databases may seriously influence the results of their analysis. Therefore we propose some strategies for stratified resampling of such databases, which may improve the representativeness of the data. We also explore the effects of different resampling options on vegetation classification. Methods: We used 6050 plot samples (relevés) of mesic grasslands from the Czech Republic. We stratified this database using (1) geographical stratification in a grid; (2) habitat stratification created by an overlay of digital maps in GIS; (3) habitat stratification with strata defined by traditional phytosociological associations; (4) habitat stratification by numerical classification and (5) habitat stratification by Ellenberg indicator values. Each time we resampled the database, taking equal numbers of relevés per stratum. We then carried out cluster analyses for the resampled data sets and compared the resulting classifications using a newly developed procedure. Results: Random resampling of the initial data set and geographically stratified resampling resulted in similar classifications. By contrast, classifications of the resampled data sets that were based on habitat stratifications (2,5) differed from each other and from the initial data set. Stratification 2 resulted in classifications that strongly reflected environmental factors with a coarse grain of spatial heterogeneity (e.g. macroclimate), whereas stratification 5 resulted in classifications emphasizing fine-grained factors (e.g. soil nutrient status). Stratification 3 led to the most deviating results, possibly due to the subjective nature of the traditional phytosociological classifications. Conclusions: Stratified resampling may increase the representativeness of phytosociological data sets, but different types of stratification may result in different classifications. No single resampling strategy is optimal or superior: the appropriate stratification method must be selected according to the objectives of specific studies. [source]


Validity of Ellenberg indicator values judged from physico-chemical field measurements

JOURNAL OF VEGETATION SCIENCE, Issue 2 2002
G.W.W. Wamelink
Abstract. The relationship between mean Ellenberg indicator values (IV) per vegetation relevé and environmental parameters measured in the field usually shows a large variation. We tested the hypothesis that this variation is caused by bias dependent on the phytosociological class. For this purpose we collected data containing vegetation relevés and measured soil pH (3631 records) or mean spring groundwater level (MSL, 1600 records). The relevés were assigned to vegetation types by an automated procedure. Regression of the mean indicator values for acidity on soil pH and the mean indicator values for moisture on MSL gave percentages explained variance similar to values that were reported earlier in literature. When the phytosociological class was added as an explanatory factor the explained variance increased considerably. Regression lines per vegetation type were estimated, many of which were significantly different from each other. In most cases the intercepts were different, but in some cases their slopes differed as well. The results show that Ellenberg indicator values for acidity and moisture appear to be biased towards the values that experts expect for the various phytosociological classes. On the basis of the results, we advise to use Ellenberg IVs only for comparison within the same vegetation type. [source]


Using topographic wetness index in vegetation ecology: does the algorithm matter?

APPLIED VEGETATION SCIENCE, Issue 4 2010
Martin Kopecký
Abstract Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which flow routing algorithms are preferable for application in vegetation ecology? Location: Forests in three different regions of the Czech Republic. Methods: We used vegetation data from 521 georeferenced plots, recently sampled in a wide range of forest communities. From a digital elevation model, we calculated 11 variations of TWI for each plot with 11 different flow routing algorithms. We evaluated the performance of differently calculated TWI by (1) Spearman rank correlation with average Ellenberg indicator values for soil moisture, (2) Mantel correlation coefficient between dissimilarities of species composition and dissimilarities of TWI and (3) the amount of variation in species composition explained by canonical correspondence analysis. Results: The choice of flow routing algorithm had a considerable effect on the performance of TWI. Correlation with Ellenberg indicator values for soil moisture, Mantel correlation coefficient and explained variation doubled when the appropriate algorithm was used. In all regions, multiple flow routing algorithms performed best, while single flow routing algorithms performed worst. Conclusions: We recommend the multiple flow routing algorithms of Quinn et al. and Freeman for application in vegetation ecology. [source]


Temporal changes in the island flora at different scales in the archipelago of SW Finland

APPLIED VEGETATION SCIENCE, Issue 4 2010
Jens-Johan Hannus
Abstract Question: How have species richness and vegetation patterns changed in a group of islands in the northern Baltic Sea over a 58-yr period of changing land use and increasing eutrophication? Location: A group of 116 islands, the Brunskär sub-archipelago, in SW Finland. Methods: A complete survey of vascular plant species performed in 1947,1949 by Skult was repeated by our group using the same methodology in 2005,2007 (historical versus contemporary, respectively). DCAs were performed and total number of species, extinction,colonization rates, species frequency changes and mean Ellenberg indicator values for light, moisture and nitrogen and Eklund indicator values for dependence of human cultural influence were obtained for each island and relevé. Results: Species richness has declined on large islands and increased on small islands. The increase in number of species on small islands is driven by a strong increase in frequency of shore species, which in turn is induced by more productive shores. The decrease in species richness on large islands is related to overgrowth of open semi-natural habitats after cessation of grazing and other agricultural practices. Conclusions: After the late 1940s, open habitats, which were created and maintained by cattle grazing and other traditional agricultural activities, have declined in favour of woody shrub and forest land. Shores have been stabilized and influenced by the eutrophication of the Baltic Sea, and the vegetation has become more homogeneous. This development, resulting in lower species diversity, poses a challenge for the preservation of biodiversity both on a local and on a landscape level. [source]


Long-term effects of cutting frequency and liming on soil chemical properties, biomass production and plant species composition of Lolio-Cynosuretum grassland after the cessation of fertilizer application

APPLIED VEGETATION SCIENCE, Issue 3 2010
Michal Hejcman
Abstract Question: Is there any effect of cutting frequency and liming on P and K availability in the soil, biomass production and plant species composition after cessation of fertilizer application? Location: Eifel Mountains, SW Germany. Methods: The long-term Grassland Extensification and Nutrient Depletion Experiment was established on a fertilized and mown pasture (Lolio-Cynosuretum) in 1993. Treatments were: (1) two cuts per year without liming, (2) two cuts with liming, (3) four cuts without liming, (4) four cuts with liming and (5) continued intensive mowing as the control. Results: From 1993 to 2006, the plant available P concentration in the soil decreased substantially, whereas K concentration decreased only slightly. Biomass production decreased from 7 to 5 t DM ha,1. These trends were affected by cessation of NPK fertilizer application but not by cutting frequency or liming. In 2007, substantial differences in species composition between the control and the two-cut and four-cut treatments were recorded, whereas liming had no effect. Higher species richness was recorded in cut treatments compared to the control, but no effects of cutting frequency or liming were observed. Ellenberg indicator values indicated that soil nutrients influenced changes in species composition only marginally. Conclusions: The decrease in productivity and available soil P and K in favor of species richness was not achieved to any greater extent by four cuts than by two cuts, or by lime application. Although species richness slightly increased, we conclude that the restoration of low productive grasslands cannot be achieved by cutting management. [source]


Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, Germany

APPLIED VEGETATION SCIENCE, Issue 2 2009
Milan Chytrý
Abstract Question: How does semi-natural grassland diversify after 65 years of differential application of Ca, N, P, and K fertilizers? Is fertilizer application adequately reflected by the Ellenberg indicator values (EIVs)? Location: Eifel Mountains, West Germany. Methods: The Rengen Grassland Experiment (RGE) was established in an oligotrophic grassland in 1941. Six fertilizer treatments (Ca, CaN, CaNP, CaNP-KCl, CaNP-K2SO4, and unfertilized control) were applied annually in five complete randomized blocks. Species composition of experimental plots was sampled in 2006 and compared with constancy tables representing grassland types in a phytosociological monograph of a wider area. Each plot was matched to the most similar community type using the Associa method. Mean EIVs were calculated for each treatment. Results: The control plots supported oligotrophic Nardus grassland of the Polygalo-Nardetum association (Violion caninae alliance). Vegetation in the Ca and CaN treatments mostly resembled montane meadow of Geranio-Trisetetum (Polygono-Trisetion). Transitional types between Poo-Trisetetum and Arrhenatheretum (both from the Arrhenatherion alliance) developed in the CaNP treatment. In the CaNP-KCl and CaNP-K2SO4 treatments, vegetation corresponded to the mesotrophic Arrhenatheretum meadow. Major discontinuity in species composition was found between control, Ca, and CaN treatments, and all treatments with P application. EIVs for both nutrients and soil reaction were considerably higher in P treatments than in Ca and CaN treatments. Surprisingly, the control plots had the lowest EIVs for continentality and moisture, although these factors had not been manipulated in the experiment. Conclusions: Long-term fertilizer application can create different plant communities belonging to different phytosociological alliances and classes, even within a distance of a few meters. Due to their correlated nature, EIVs can erroneously indicate changes in factors that actually did not change, but co-varied with factors that did change. In P-limited ecosystems, EIVs for nutrients may indicate availability of P rather than N. [source]


Can soil seed banks contribute to the restoration of dune slacks under conservation management?

APPLIED VEGETATION SCIENCE, Issue 2 2009
Katharina Plassmann
Abstract Questions: Does the soil seed bank resemble the former early successional stages of a dune slack system more than the established later successional vegetation? Does it have the potential to contribute to the conservation of a highly endangered habitat? Location: Dune slacks at Newborough Warren, UK. Methods: The composition of the soil seed bank in two depth layers was determined using the seedling emergence method between March 2004 and April 2005. Long-term monitoring data on the floristic composition of the established vegetation were obtained from the national conservation agency, and additional monitoring was undertaken in 2003. Floristic composition, seed weights, seed longevity of component species and Ellenberg indicator values were used to compare the seed bank and established vegetation. Results: The soil seed bank was diverse and contained typical dune slack species, species of early successional stages and species of conservation interest. A comparison between the composition of the seed bank and historical data on the composition of the established vegetation showed that the seed bank reflects earlier successional stages more closely than the current aboveground vegetation. This study increases the scarce information currently available on the seed bank ecology of several species, including two orchid species. Conclusions: The soil seed bank can be expected to contribute to vegetation change after disturbance. Stimulation of germination from the seed bank through management may contribute to the conservation of both characteristic and threatened species typical of dune slacks. [source]


Herbage mass and nutritive value of herbage of extensively managed temperate grasslands along a gradient of shrub encroachment

GRASS & FORAGE SCIENCE, Issue 3 2009
S. Kesting
Abstract Semi-natural grasslands often serve as important reserves of biodiversity. In Europe extensive grazing by livestock is considered an appropriate management to conserve biodiversity value and to limit shrub encroachment. However, little is known about the influence of shrubs on agronomic values. A gradient analysis of shrub-invaded temperate grasslands (from shrub-free to pioneer forest) in Germany was carried out to test the hypothesis that herbage mass and variables describing nutritive value of herbage decrease with increasing shrub encroachment. The herbage mass of dry matter (DM), variables describing the nutritive value of herbage, composition of the vegetation and mean of Ellenberg's indicator values were analysed with respect to the extent of shrubs. There was a reduction of herbage mass of DM from 3570 to 210 kg ha,1 with increasing shrub encroachment. Metabolizable energy concentration of herbage ranged from 8ˇ9 to 10ˇ2 MJ kg,1 DM and crude protein concentration from 72 to 171 g kg,1 DM, both measures being positively correlated with shrub occurrence. Increasing shrub occurrence was associated with a decrease in water-soluble carbohydrates concentration (from 151 to 31 g kg,1) and a reduction in the indicator ,forage value'. The results indicate a potentially large agronomic value for shrub-encroached temperate grasslands. [source]


Extending Ellenberg's indicator values to a new area: an algorithmic approach

JOURNAL OF APPLIED ECOLOGY, Issue 1 2000
Mark O. Hill
Summary 1.,Ellenberg's indicator values scale the flora of a region along gradients reflecting light, temperature, continentality, moisture, soil pH, fertility and salinity. They can be used to monitor environmental change. 2.,Ellenberg values can be extended from central Europe, for which they were defined, to nearby parts of Europe. Given a database of quadrat samples, they can be repredicted by a simple algorithm consisting of two-way weighted averaging, followed by local regression. 3.,A database of British samples was assembled from two large surveys. Ellenberg values were repredicted. 4.,Except for the indicator of continentality, the correlation of repredicted and original values was in the range 0ˇ72 (light) to 0ˇ91 (moisture). The continentality indicator could not be adequately repredicted by the algorithm, and is unusable in Britain. 5.,Discrepancies between original and repredicted values can be attributed to various causes, including wrong original values, differing ecological requirements in Britain and central Europe, biased sampling of the British range of habitats, and the occurrence of small plants in shaded or basic microhabitats within well illuminated or predominantly acid quadrats. 6.,The repredicted values were generally reliable, but a small proportion was clearly wrong. Wrong values were due to either inadequate sampling of species' realized niches in Britain or sampling with quadrats that were too large and included species that were not close associates. [source]