Elevation Change (elevation + change)

Distribution by Scientific Domains


Selected Abstracts


The 1994 Sefidabeh earthquakes in eastern Iran: blind thrusting and bedding-plane slip on a growing anticline, and active tectonics of the Sistan suture zone

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2000
M. Berberian
Summary In 1994 a sequence of five earthquakes with Mw 5.5,6.2 occurred in the Sistan belt of eastern Iran, all of them involving motion on blind thrusts with centroid depths of 5,10 km. Coseismic ruptures at the surface involved bedding-plane slip on a growing hanging-wall anticline displaying geomorphological evidence of uplift and lateral propagation. The 1994 earthquakes were associated with a NW-trending thrust system that splays off the northern termination of a major N,S right-lateral strike-slip fault. Elevation changes along the anticline ridge suggest that displacement on the underlying thrust dies out to the NW, away from its intersection with the strike-slip fault. This is a common fault configuration in eastern Iran and accommodates oblique NE,SW shortening across the N,S deforming zone, probably by anticlockwise rotations about a vertical axis. This style of fault kinematics may be transitional to a more evolved state that involves partitioning of the strike-slip and convergent motion onto separate subparallel faults. [source]


THE RESPONSE OF PARTIALLY DEBRIS-COVERED VALLEY GLACIERS TO CLIMATE CHANGE: THE EXAMPLE OF THE PASTERZE GLACIER (AUSTRIA) IN THE PERIOD 1964 TO 2006

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 4 2008
ANDREAS KELLERER-PIRKLBAUER
ABSTRACT. Long-term observations of partly debris-covered glaciers have allowed us to assess the impact of supra-glacial debris on volumetric changes. In this paper, the behaviour of the partially debris-covered, 3.6 km2 tongue of Pasterze Glacier (47°05,N, 12°44,E) was studied in the context of ongoing climate changes. The right part of the glacier tongue is covered by a continuous supra-glacial debris mantle with variable thicknesses (a few centimetres to about 1 m). For the period 1964,2000 three digital elevation models (1964, 1981, 2000) and related debris-cover distributions were analysed. These datasets were compared with long-term series of glaciological field data (displacement, elevation change, glacier terminus behaviour) from the 1960s to 2006. Differences between the debriscovered and the clean ice parts were emphasised. Results show that volumetric losses increased by 2.3 times between the periods 1964,1981 and 1981,2000 with significant regional variations at the glacier tongue. Such variations are controlled by the glacier emergence velocity pattern, existence and thickness of supra-glacial debris, direct solar radiation, counter-radiation from the valley sides and their changes over time. The downward-increasing debris thickness is counteracting to a compensational stage against the common decrease of ablation with elevation. A continuous debris cover not less than 15 cm in thickness reduces ablation rates by 30,35%. No relationship exists between glacier retreat rates and summer air temperatures. Substantial and varying differences of the two different terminus parts occurred. Our findings clearly underline the importance of supra-glacial debris on mass balance and glacier tongue morphology. [source]


Differential effects of past climate warming on mountain and flatland species distributions: a multispecies North American mammal assessment

GLOBAL ECOLOGY, Issue 1 2007
Robert Guralnick
ABSTRACT Aim, The magnitude of predicted range shifts during climate change is likely to be different for species living in mountainous environments compared with those living in flatland environments. The southern edges of ranges in mountain species may not shift northwards during warming as populations instead migrate up available elevational gradients; overall latitudinal range appears therefore to expand. In contrast, flatland species should shift range centroids northwards but not expand or contract their latitudinal range extent. These hypotheses were tested utilizing Late Pleistocene and modern occurrence data. Location, North America. Methods, The location and elevation of modern and Late Pleistocene species occurrences were collected from data bases for 26 species living in mountain or flatland environments. Regressions of elevation change over latitude, and southern and northern range edges were calculated for each species for modern and fossil data sets. A combination of regressions and anovas were used to test whether flatland species shift range edges and latitudinal extents more than mountain species do. Results, Flatland species had significantly larger northward shifts at southern range edges than did mountain-dwelling species from the Late Pleistocene to the present. There was also a significant negative correlation between the amount of change in the latitude of the southern edge of the range and the amount of elevational shifting from the Late Pleistocene to the present. Although significant, only c. 25% of the variance could be explained by this relationship. In addition, there was a weak indication that overall range expansion was less in flatland-dwelling than in mountain-dwelling species. Main conclusions, The approach used here was to examine past species' range responses to warming that occurred after the last ice ages as a means to better predict potential future responses to continued warming. The results confirm predictions of differential southern edge and overall range shifts for species occupying mountain and flatland regions in North America. The findings may be broadly applicable in other regions, thus allowing better modelling of future range and distribution related responses. [source]


Coriolis effects in mesoscale flows with sharp changes in surface conditions

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 603 2004
J. C. R. Hunt
Abstract A general linearized ,shallow-layer' perturbation model, where the approximately neutral lower layer of thickness h0 is situated below a stable upper layer (i.e. an inversion with temperature change ,T), is developed for steady, mesoscale atmospheric flows over low-lying topography whose height is less than h0. With the Coriolis parameter f, sharp changes in surface conditions (surface roughness, terrain elevation, heat flux) are modelled as a distributed body force through the lower layer. The Froude number of this layer is small. Typical cases of mesoscale discontinuities are examined. The results are compared with those of a continuously stratified model and observations, and with numerical mesoscale model results for a meteorological case-study over the Dover Straits region of the English Channel. The main results are: (i) If the wind direction is parallel to the edge-line separating the change in surface roughness, there are marked increases and decreases in these coastal winds whose maxima can occur over the sea within a distance of order h0(,1 km) of a coast. The strength of these wind ,jets', which do not occur in the absence of Coriolis force, decrease away from the edge-line gradually over transverse length-scales of the order of the Rossby deformation radius . Changes to surface roughness lead to an increase in the wind speed perturbation in the downwind direction until limited by non-linear effects. When the wind is at an angle to a roughness change or coast, the maxima occur at the coastline. (ii) Where there are sharp changes in the orientation of contours of constant roughness length (e.g. at capes or bays on the coastline or wakes of high-drag areas), ,detached' jets are formed in the downwind direction. (iii) Changes in surface elevation at a coast produce effects different from those of roughness; a positive wind jet forms parallel to the coast in the direction of the wind when the coast is on the right (looking downwind) and a negative jet when the coast is on the left. These jets do not increase in strength along the flow and do not persist downwind. (iv) Coriolis effects also determine how the inversion height varies near coastlines and surface roughness changes; for example, increasing/decreasing inland over a distance LR when stable airflow approaches from the sea and the coast is on the right/left of an observer looking downwind (opposite in the southern hemisphere). This mechanism is consistent with observed increasing/decreasing cloudiness inland from a coast. (v) Other effects occur where the surface elevation changes gradually over a distance of order LR (e.g. a wide, shallow valley); frictional effects are comparable with buoyancy and Coriolis forces, and flows perpendicular to the elevation change are deflected to the left (in the northern hemisphere), as observed in the Rhine valley. (vi) The shallow-layer model simulates the major features of the low-level flow field computed using the numerical mesoscale model with a horizontal resolution of 2 km, i.e. of order h0. Broad features were captured using a coarser resolution of 12 km. (vii) The analysis provides a method of estimating errors associated with finite grid size in numerical mesoscale models. Copyright © 2004 Royal Meteorological Society [source]


Photogrammetric Analysis of Front Range Rock Glacier Flow Rates

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 4 2005
Jason Ronald Janke
Abstract Flow rates for rock glaciers in the European Alps have been monitored using photogrammetric techniques; however, a program has not been initiated for similar Front Range, USA, rock glaciers. Horizontal rock glacier displacements were measured by tracking large surficial rocks on temporal orthophotos from 1978, 1990, and 1999. Vertical change was measured by creating digital elevation models (DEMs) from digital stereopairs, then subtracting elevations to detect change. Long-term horizontal velocities ranged from 14 to 20 cm/yr on average, although uncertainty ranged from 4 to 5 cm/yr. On average, vertical elevation changes were negligible with most rock glaciers exhibiting a slight growth or thinning (1,2 cm/yr). Over shorter time scales (c. 10-year periods), horizontal velocities have only increased by about 2 cm/yr. Because horizontal and vertical change is minimal, Front Range rock glaciers appear to be adjusted with current climate, unlike some rock glaciers in the European Alps that have shown increasing subsidence rates or significant increasing or decreasing horizontal velocities. [source]


MODELING THE LONG TERM IMPACTS OF USING RIGID STRUCTURES IN STREAM CHANNEL RESTORATION1

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2006
Sue L. Niezgoda
Abstract: Natural channel designs often incorporate rigid instream structures to protect channel banks, provide grade control, promote flow deflection, or otherwise improve channel stability. The long term impact of rigid structures on natural stream processes is relatively unknown. The objective of this study was to use long term alluvial channel modeling to evaluate the effect of rigid structures on channel processes and assess current and future stream channel stability. The study was conducted on Oliver Run, a small stream in Pennsylvania relocated due to highway construction. Field data were collected for one year along the 107 m reach to characterize the stream and provide model input, calibration, and verification data. FLUVIAL-12 was used to evaluate the long term impacts of rigid structures on natural channel adjustment, overall channel stability, and changing form and processes. Based on a consideration of model limitations and results, it was concluded that the presence of rigid structures reduced channel width-to-depth ratios, minimized bed elevation changes due to long term aggradation and degradation, limited lateral channel migration, and increased the mean bed material particle size throughout the reach. Results also showed how alluvial channel modeling can be used to improve the stream restoration design effort. [source]


Investigating the surface process response to fault interaction and linkage using a numerical modelling approach

BASIN RESEARCH, Issue 3 2006
P.A. Cowie
ABSTRACT In order to better understand the evolution of rift-related topography and sedimentation, we present the results of a numerical modelling study in which elevation changes generated by extensional fault propagation, interaction and linkage are used to drive a landscape evolution model. Drainage network development, landsliding and sediment accumulation in response to faulting are calculated using CASCADE, a numerical model developed by Braun and Sambridge, and the results are compared with field examples. We first show theoretically how the ,fluvial length scale', Lf, in the fluvial incision algorithm can be related to the erodibility of the substrate and can be varied to mimic a range of river behaviour between detachment-limited (DL) and transport-limited (TL) end-member models for river incision. We also present new hydraulic geometry data from an extensional setting which show that channel width does not scale with drainage area where a channel incises through an area of active footwall uplift. We include this information in the coupled model, initially for a single value of Lf, and use it to demonstrate how fault interaction controls the location of the main drainage divide and thus the size of the footwall catchments that develop along an evolving basin-bounding normal fault. We show how erosion by landsliding and fluvial incision varies as the footwall area grows and quantify the volume, source area, and timing of sediment input to the hanging-wall basin through time. We also demonstrate how fault growth imposes a geometrical control on the scaling of river discharge with downstream distance within the footwall catchments, thus influencing the incision rate of rivers that drain into the hanging-wall basin. Whether these rivers continue to flow into the basin after the basin-bounding fault becomes fully linked strongly depends on the value of Lf. We show that such rivers are more likely to maintain their course if they are close to the TL end member (small Lf); as a river becomes progressively more under supplied, i.e. the DL end member (large Lf), it is more likely to be deflected or dammed by the growing fault. These model results are compared quantitatively with real drainage networks from mainland Greece, the Italian Apennines and eastern California. Finally, we infer the calibre of sediments entering the hanging-wall basin by integrating measurements of erosion rate across the growing footwall with the variation in surface processes in space and time. Combining this information with the observed structural control of sediment entry points into individual hanging-wall depocentres we develop a greater understanding of facies changes associated with the rift-initiation to rift-climax transition previously recognised in syn-rift stratigraphy. [source]