Elevated CO2 Concentration (elevated + co2_concentration)

Distribution by Scientific Domains


Selected Abstracts


Elevated air temperature alters an old-field insect community in a multifactor climate change experiment

GLOBAL CHANGE BIOLOGY, Issue 4 2009
SHAWN N. VILLALPANDO
Abstract To address how multiple, interacting climate drivers may affect plant,insect community associations, we sampled insects that naturally colonized a constructed old-field plant community grown for over 2 years under simultaneous CO2, temperature, and water manipulation. Insects were sampled using a combination of sticky traps and vacuum sampling, identified to morphospecies and the insect community with respect to abundance, richness, and evenness quantified. Individuals were assigned to four broad feeding guilds in order to examine potential trophic level effects. Although there were occasional effects of CO2 and water treatment, the effects of warming on the insect community were large and consistent. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Nonmetric multidimensional scaling found that only temperature affected insect community composition, while a Sørensen similarity index showed less correspondence in the insect community between temperature treatments compared with CO2 or soil water treatments. Within the herbivore guild, elevated temperature significantly reduced richness and evenness. Corresponding reductions of diversity measures at higher trophic levels (i.e. parasitoids), along with the finding that herbivore richness was a significant predictor of parasitoid richness, suggest trophic-level effects within the insect community. When the most abundant species were considered in temperature treatments, a small number of species increased in abundance at elevated temperature, while others declined compared with ambient temperature. Effects of temperature in the dominant insects demonstrated that treatment effects were limited to a relatively small number of morphospecies. Observed effects of elevated CO2 concentration on whole-community foliar N concentration did not result in any effect on herbivores, which are probably the most susceptible guild to changes in plant nutritional quality. These results demonstrate that climatic warming may alter certain insect communities via effects on insect species most responsive to a higher temperature, contributing to a change in community structure. [source]


Effects of atmospheric CO2 concentration and defoliation on the growth of Themeda triandra

GRASS & FORAGE SCIENCE, Issue 3 2004
S. J. E. Wand
Abstract The effects of elevated atmospheric carbon dioxide (CO2) concentration (700 ,mol mol,1) on defoliated (three clippings at 3-week intervals) and undefoliated plants were determined for the C4 grass Themeda triandra, Forsk. The elevated CO2 concentration significantly increased leaf regrowth following defoliation, and total leaf production was greatest in this treatment. Shoot biomass of undefoliated plants was also increased under the elevated CO2 concentration treatment. The primary effect of the elevated CO2 concentration in both defoliated and undefoliated plants was an increase in individual leaf length and mass of dry matter, linked to a higher leaf water content and increased photosynthetic rates at the canopy level. Photosynthetic down-regulation at the leaf level occurred, but this was compensated for by increased assimilation rates and greater canopy leaf area at the elevated CO2 concentration. Increases in leaf and sheath growth of defoliated plants in the elevated CO2 concentration treatment were lost following a final 3-week reversion to ambient CO2 concentration, but occurred in plants exposed to the elevated CO2 concentration for the final 3-week period only. In conclusion, elevated atmospheric CO2 concentration increases shoot growth via increased leaf extension, which is directly dependent on stimulation of concurrent photosynthesis. CO2 responsiveness is sustained following moderate defoliation but is reduced when plants experience reduced vigour as a result of maturation or high frequency of defoliation. [source]


Growth and Wood/Bark Properties of Abies faxoniana Seedlings as Affected by Elevated CO2

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 3 2008
Yun-Zhou Qiao
Abstract Growth and wood and bark properties of Abies faxoniana seedlings after one year's exposure to elevated CO2 concentration (ambient + 350 (± 25) ,mol/mol) under two planting densities (28 or 84 plants/m2) were investigated in closed-top chambers. Tree height, stem diameter and cross-sectional area, and total biomass were enhanced under elevated CO2 concentration, and reduced under high planting density. Most traits of stem bark were improved under elevated CO2 concentration and reduced under high planting density. Stem wood production was significantly increased in volume under elevated CO2 concentration under both densities, and the stem wood density decreased under elevated CO2 concentration and increased under high planting density. These results suggest that the response of stem wood and bark to elevated CO2 concentration is density dependent. This may be of great importance in a future CO2 enriched world in natural forests where plant density varies considerably. The results also show that the bark/wood ratio in diameter, stem cross-sectional area and dry weight are not proportionally affected by elevated CO2 concentration under the two contrasting planting densities. This indicates that the response magnitude of stem bark and stem wood to elevated CO2 concentration are different but their response directions are the same. [source]


Floristic composition of a Swedish semi-natural grassland during six years of elevated atmospheric CO2

JOURNAL OF VEGETATION SCIENCE, Issue 5 2002
Mark Marissink
Krok & Almquist (2001) Abstract. A semi-natural grassland in Sweden was exposed to an elevated CO2 concentration during a six-year open-top chamber experiment. Vegetation composition was assessed twice a year using the point-intercept method. The field had been grazed previously, but when the experiment started this was replaced with a cutting regime with one cut (down to ground level) each year in early August. From the third to the sixth year of the study the harvested material was divided into legumes, non-leguminous forbs and grasses, dried and weighed. Elevated CO2 had an effect on species composition (as analysed by Principal Component Analysis) that increased over time. It also tended to increase diversity (Shannon index) in summer, but reduce it in spring. However, the effects of the weather and/or time on species composition and diversity were much more prominent than CO2 effects. Since the weather was largely directional over time (from dry to wet), with the exception of the fifth year, it was difficult to distinguish between weather effects and changes caused by a changed management regime. In all treatments, grasses increased over time in both mass and point-intercept measurements, whereas non-leguminous forbs decreased in mass, but not in point-intercept measurements. Legumes increased in the point-intercept measurements, but not in biomass, at elevated CO2, but not in the other treatments. Overall, we found that elevated CO2 affected species composition; however, it was only one of many factors and a rather weak one. [source]


C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2

GLOBAL CHANGE BIOLOGY, Issue 9 2004
Raymond V. Barbehenn
Abstract Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open-top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses. [source]


Individual growth rates do not predict aphid population densities under altered atmospheric conditions

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2010
Edward B. Mondor
1Altered atmospheric composition, associated with climate change, can modify herbivore population dynamics through CO2 and/or O3 -mediated changes in plant quality. 2Although pea aphid Acyrthosiphon pisum genotypes exhibit intraspecific variation in population growth in response to atmospheric composition, the proximate mechanisms underlying this variation are largely unknown. 3By rearing single (green, pink) and mixed (green + pink) pea aphid genotypes on red clover Trifolium pratense at the Aspen Free Air CO2 and O3 Enrichment (Aspen FACE) site, we assessed whether: (i) elevated CO2 and/or O3 concentrations alter aphid growth and development and (ii) individual aphid growth rates predict aphid population densities. 4We showed that growth and development of individual green and pink aphids were not influenced by CO2 and/or O3 concentrations when reared as individual or mixed genotypes. Individual growth rates, however, did not predict population densities. 5Reared as a single genotype, green pea aphid populations decreased in response to elevated CO2 concentrations, but not in response to elevated CO2 + O3 concentrations. Pink pea aphid populations reared as a single genotype were unaffected by augmented CO2 or O3. Populations of mixed genotypes, however, were reduced under elevated CO2 concentrations, irrespective of O3 concentrations. 6Herbivore population sizes may not readily be predicted from growth rates of individual organisms under atmospheric conditions associated with global climate change. [source]


Acclimation of photosynthesis to elevated CO2 in onion (Allium cepa) grown at a range of temperatures

ANNALS OF APPLIED BIOLOGY, Issue 1 2004
T R WHEELER
Summary Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about -2.5°C to +2.5°C from outside temperatures) maintained at either 374 or 532 ,mol mol,1 CO2. Plant leaf area was determined non-destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light-saturated rates of leaf photosynthesis (Asat) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C1/C3 ratio) was 7.4% less for plants grown at elevated compared with normal CO2. Asat in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C1. Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field-grown crops. [source]