Element Interfaces (element + interface)

Distribution by Scientific Domains


Selected Abstracts


Coupling of mapped wave infinite elements and plane wave basis finite elements for the Helmholtz equation in exterior domains

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 10 2003
Rie Sugimoto
Abstract The theory for coupling of mapped wave infinite elements and special wave finite elements for the solution of the Helmholtz equation in unbounded domains is presented. Mapped wave infinite elements can be applied to boundaries of arbitrary shape for exterior wave problems without truncation of the domain. Special wave finite elements allow an element to contain many wavelengths rather than having many finite elements per wavelength like conventional finite elements. Both types of elements include trigonometric functions to describe wave behaviour in their shape functions. However the wave directions between nodes on the finite element/infinite element interface can be incompatible. This is because the directions are normally globally constant within a special finite element but are usually radial from the ,pole' within a mapped wave infinite element. Therefore forcing the waves associated with nodes on the interface to be strictly radial is necessary to eliminate this internode incompatibility. The coupling of these elements was tested for a Hankel source problem and plane wave scattering by a cylinder and good accuracy was achieved. This paper deals with unconjugated infinite elements and is restricted to two-dimensional problems. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Simulating the hydraulic characteristics of the lower Yellow River by the finite-volume technique

HYDROLOGICAL PROCESSES, Issue 14 2002
Qing Wan
Abstract The finite-volume technique is used to solve the two-dimensional shallow-water equations on unstructured mesh consisting of quadrilateral elements. In this paper the algorithm of the finite-volume method is discussed in detail and particular attention is paid to accurately representing the complex irregular computational domain. The lower Yellow River reach from Huayuankou to Jiahetan is a typical meandering river. The generation of the computational mesh, which is used to simulate the flood, is affected by the distribution of water works in the river channel. The spatial information about the two Yellow River levee, the protecting dykes, and those roads that are obviously higher than the ground, need to be used to generate the computational mesh. As a result these dykes and roads locate the element interfaces of the computational mesh. In the model the finite-volume method is used to solve the shallow-wave equations, and the Osher scheme of the empirical function is used to calculate the flux through the interface between the neighbouring elements. The finite-volume method has the advantage of using computational domain with complex geometry, and the Osher scheme is a method based on characteristic theory and is a monotone upwind numerical scheme with high resolution. The flood event with peak discharge of 15 300 m3/s, occurring in the period from 30 July to 10 August 1982, is simulated. The estimated result indicates that the simulation method is good for routing the flood in a region with complex geometry. Copyright © 2002 John Wiley & Sons, Ltd. [source]


A discontinuous enrichment method for the efficient solution of plate vibration problems in the medium-frequency regime

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 2 2010
Paolo Massimi
Abstract A discontinuous enrichment method (DEM) is presented for the efficient discretization of plate vibration problems in the medium-frequency regime. This method enriches the polynomial shape functions of the classical finite element discretization with free-space solutions of the biharmonic operator governing the elastic vibrations of an infinite Kirchhoff plate. These free-space solutions, which represent flexural waves and decaying modes, are discontinuous across the element interfaces. For this reason, two different and carefully constructed Lagrange multiplier approximations are introduced along the element edges to enforce a weak continuity of the transversal displacement and its normal derivative, and discrete Lagrange multipliers are introduced at the element corners to enforce there a weak continuity of the transversal displacement. The proposed DEM is illustrated with the solution of sample plate vibration problems with different types of harmonic loading in the medium-frequency regime, away from and close to resonance. In all cases, its performance is found to be significantly superior to that of the classical higher-order finite element method. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Hierarchic finite element bases on unstructured tetrahedral meshes

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 14 2003
Mark Ainsworth
Abstract The problem of constructing hierarchic bases for finite element discretization of the spaces H1, H(curl), H(div) and L2 on tetrahedral elements is addressed. A simple and efficient approach to ensuring conformity of the approximations across element interfaces is described. Hierarchic bases of arbitrary polynomial order are presented. It is shown how these may be used to construct finite element approximations of arbitrary, non-uniform, local order approximation on unstructured meshes of curvilinear tetrahedral elements. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Implementing a management system architecture framework

BELL LABS TECHNICAL JOURNAL, Issue 4 2000
William C. Goers
Any practical vision for the evolution of communications services must include a strategy for how networking vendors make it possible for service providers to manage their networks. While the Telecommunications Management Network (TMN) framework has proponents, the IP services community has shown little interest. Furthermore, operations systems developers have long attempted to produce the best framework, but the technology is outdated before it exists. This paper addresses both issues by presenting an application-driven model for integrated management. This model can be applied to either a "classic" framework orientation or a management application view. What is common between these two views are a management portal, common data models, multiple interface technologies, open and simple network element interfaces, and common operations, administration, and administration (OA&M) tools. These are the elements for which there needs to be a consistent set of interface definitions. They form the basis for the construction of next-generation management applications. [source]