Element Compositions (element + composition)

Distribution by Scientific Domains

Kinds of Element Compositions

  • trace element composition


  • Selected Abstracts


    Chemical composition and toxic trace element composition of some Nigerian edible wild mushrooms

    INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 1 2008
    Olumuyiwa S. Falade
    Summary Two essential amino acids (methionine and tryptophan); anti-nutritional factors (tannin and trypsin inhibitor) and toxic elements (Pb, Cd, Ni, As, Hg and Cr) were determined spectrophotometrically from five edible wild mushrooms. The tryptophan content was between 1.00 and 1.82 g (100 g),1 but methionine was low at 0.26,1.38 g (100 g),1. Tannin content was high (30.3,40.0 mg g,1) but trypsin inhibitor was low (22.0,39.5 TIU g,1). Trace elements analysis reviled Pb (0.34,5.06 mg kg,1) to be the highest of all the trace elements. Cd was (0.06,1.70 mg kg,1), Ni (0.26,2.08 mg kg,1), As (0.17,0.92 mg kg,1), Hg (0.01,0.05 mg kg,1) and Cr (0.04,0.22 mg kg,1). These mushrooms are nutritious but must be well processed to eliminate or at least reduce the levels of tannin and Pb to improve their nutritional values. [source]


    Use of trace elements in feathers of sand martin Riparia riparia for identifying moulting areas

    JOURNAL OF AVIAN BIOLOGY, Issue 3 2003
    Tibor Szép
    We investigated whether trace elements in tail feathers of an insectivorous and long-distance migratory bird species could be used to identify moulting areas and hence migratory pathways. We analysed tail feathers from birds of different age and sex collected from a range of different breeding sites across Europe. The site of moult had a large effect on elemental composition of feathers of birds, both at the European and African moulting sites. Analysis of feathers of nestlings with known origin suggested that the elemental composition of feathers depended largely upon the micro-geographical location of the colony. The distance between moulting areas could not explain the level of differences in trace elements. Analysis of feathers grown by the same individuals on the African wintering grounds and in the following breeding season in Europe showed a large difference in composition indicating that moulting site affects elemental composition. Tail feathers moulted in winter in Africa by adults breeding in different European regions differed markedly in elemental composition, indicating that they used different moulting areas. Analysis of tail feathers of the same adult individuals in two consecutive years showed that sand martins in their first and second wintering season grew feathers with largely similar elemental composition, although the amounts of several elements in tail feathers of the older birds was lower. There was no difference between the sexes in the elemental composition of their feathers grown in Africa. Investigation of the trace element composition of feathers could be a useful method for studying similarity among groups of individuals in their use of moulting areas. [source]


    Late Quaternary terrestrial tephrochronology of Iceland,frequency of explosive eruptions, type and volume of tephra deposits,

    JOURNAL OF QUATERNARY SCIENCE, Issue 2 2008
    Gudrún Larsen
    Abstract Close to 100 silicic tephra layers have been identified in Icelandic terrestrial soils of Holocene age. The majority of these tephras were erupted at the Hekla, Torfajökull, Öræfajökull, Askja, Snæfellsjökull, Eyjafjallajökull and Katla central volcanoes. By far the most active is Hekla with close to 50 identified silicic tephra layers in ,8000 years, showing an inverse relationship between eruption frequency and volume of erupted tephra. Volumes of uncompacted silicic tephra layers range from <0.01,km3 to >10,km3, with nearly 50% of known tephra volumes lying between 0.1 and 0.5,km3. Seven closely spaced Hekla eruptions in the period 950,550 BC with identical major element composition illustrate the need of stratigraphic control in short and long distance correlations. A 2600 year old tephra geochemically indistinguishable from the Borrobol tephra is a reminder that no tephra is geochemically unique. The major producers of basaltic tephra are the volcanic systems that are partly covered by ice, or partly lying within areas of high groundwater or extending offshore, i.e. the Grímsvötn, Katla, Veidivötn-Bárdarbunga, Reykjanes, Kverkfjöll and Vestmannaeyjar volcanic systems. The best known eruption record is that of the Katla system with over 170 identified basaltic tephra layers and more than 300 estimated in 8400 years. The Grímsvötn system is currently the most active volcanic system with over 70 eruptions during the last 1100 years. Volumes of uncompacted basaltic tephra layers range from <0.01,km3 to >20,km3, the majority of known tephra volumes lying between 0.1 and 1,km3. The most voluminous basaltic tephra deposit, the ,10,200,yr old Saksunarvatn tephra, may however represent more than one eruption on the Grímsvötn system. Deposition of approximately 800 basaltic tephra layers during the last 9000 14C years is estimated but many of those erupted from volcanoes within ice caps have not been preserved. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    The influence of tuber mineral element composition as a function of geographical location on acrylamide formation in different Italian potato genotypes

    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 12 2010
    Anne Whittaker
    Abstract BACKGROUND: The present study was aimed at examining the effect of tuber mineral composition, distinctive for geographical location, on the expression of acrylamide precursors in three potato genotypes (Arinda, Rossa di Cetica and Sieglinde) in three Italian potato cultivation regions (Puglia, Sicily and Tuscany). RESULTS: Sucrose and amino acids were not correlated with acrylamide formation. In contrast, reducing sugars, limiting with respect to the principal amino acid precursor asparagine, were positively correlated with acrylamide. From analysis of variance, both acrylamide and reducing sugars were not significant for variety but highly significant for location, with higher levels occurring in all three varieties cultivated in Tuscany, followed by Sicily and Puglia respectively. Reducing sugars were negatively correlated with K and Ca and positively correlated with Zn and Cu. Neither N nor P was correlated with reducing sugar content. Path analysis, a statistical technique distinguishing causation and correlation between variables, was implemented to provide additional insight on the interactions between mineral elements and reducing sugars under open field conditions. The variation in reducing sugars in all three varieties was shown to be attributable to Zn. CONCLUSION: Cultivation location has a significant impact on the composition of tuber mineral elements and, as a result, on genotype in the expression of reducing sugars. The negative correlation between Zn and K and the variation in reducing sugar content attributed to the element Zn, which is particularly available in acid soils, are important factors warranting future research aimed at reducing acrylamide formation from an agronomic perspective. Copyright © 2010 Society of Chemical Industry [source]


    A Novel Inorganic Polymer as Cathode Material for Secondary Lithium Batteries

    MACROMOLECULAR MATERIALS & ENGINEERING, Issue 10 2005
    Guo-Xiang Xu
    Abstract Summary: This paper introduces a new inorganic poly(phosphazene disulfide) material. With unique element composition and molecular structure, the polymer has noncombustible safety and preferable conductivity. When used as cathode material for rechargeable lithium batteries, the polymer's first discharge capacity is as high as 467.9 mAh,·,g,1, which can be retained at 409.9 mAh,·,g,1 after 60 repeated cycles. Therefore, it has a great application potential in the field of lithium batteries. Replacement of the Cl atoms by SS groups by refluxing Na2S2 and linear poly(dichloro-phosphazene). [source]


    A petrological, mineralogical, and chemical analysis of the lunar mare basalt meteorite LaPaz Icefield 02205, 02224, and 02226

    METEORITICS & PLANETARY SCIENCE, Issue 7 2006
    Katherine H. Joy
    They consist mainly of zoned pyroxene and plagioclase grains, with minor ilmenite, spinel, and mesostasis regions. Large, possibly xenocrystic, forsteritic olivine grains (<3% by mode) contain small trapped multiphase melt inclusions. Accessory mineral and mesostasis composition shows that the samples have experienced residual melt crystallization with silica oversaturation and late-stage liquid immiscibility. Our section of LAP 02224 has a vesicular fusion crust, implying that it was at one time located sufficiently close to the lunar surface environment to have accumulated solar-wind-implanted gases. The stones have a comparable major element composition and petrography to low-Ti, low-Al basalts collected at the Apollos 12 and 15 landing sites. However, the LAP stones also have an enriched REE bulk composition and are more ferroan (Mg numbers in the range of 31 to 35) than similar Apollo samples, suggesting that they represent members of a previously unsampled fractionated mare basalt suite that crystallized from a relatively evolved lunar melt. [source]


    To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs

    OIKOS, Issue 5 2010
    Jonas Persson
    Homeostasis of element composition is one of the central concepts of ecological stoichiometry. In this context, homeostasis is the resistance to change of consumer body composition in response to the chemical composition of consumer's food. To simplify theoretical analysis, it has generally been assumed that autotrophs exhibit flexibility in their composition, while heterotrophs are confined to a constant (strictly homeostatic) body composition. Yet, recent studies suggest that heterotrophs are not universally strictly homeostatic. We examined the degree to which autotrophs and heterotrophs regulate stoichiometric homeostasis (P:C, N:C, N:P, or %P and %N). We conducted a quantitative review and meta-analysis using 132 datasets extracted from 57 literature sources which examined the dependence of organismal stoichiometry on resource stoichiometry. Among individual datasets, there was a wide range of responses from strictly homeostatic to non-homeostatic. Even within heterotrophic organisms, varying levels of homeostasis were observed. Comparing the degree of homeostasis between organisms based on large-scale habitat types using meta-analysis indicated some significant differences between groups. For example, aquatic macroinvertebrates were significantly more homeostatic in terms of P:C than terrestrial invertebrates. Our meta-analysis also confirmed that, with regard to N:P, heterotrophs are significantly more homeostatic than autotrophs. Furthermore, our analysis indicated that the homeostasis parameter 1/H, despite being a potentially useful predictive metric, has to be utilized with caution since it oversimplifies some important aspects of the responses of organisms to elemental imbalances. This critical evaluation of stoichiometric homeostasis contributes to a better understanding of many food-web interactions, which are commonly driven by elemental imbalances between consumers and their resources. [source]


    The Cornubian Batholith: an Example of Magmatic Fractionation on a Crustal Scale

    RESOURCE GEOLOGY, Issue 3 2006
    Bruce W. Chappell
    Abstract. The Cornubian Batholith comprises six major and several smaller bodies of S-type granite in southwestern England. These late-Variscan granites comprise two-mica granites, and much less abundant Li-mica granites that are restricted to one of the major bodies (St Austell) and smaller bodies. Some of these intrusive rocks are associated with major Sn mineralization. This paper is concerned with the geochemistry of the two-mica granites, which are felsic, strongly peraluminous, and have a high total alkali content and low Na:K. Rocks with very similar compositions to these granites occur elsewhere, including the Variscan granites of continental Europe, and in southeastern Australia. In detail all of the major plutons of this batholith have distinctive compositions, except for Bodmin Moor and Carnmenellis which cannot be discriminated from each other compositionally. A comparison with experimental data shows that the granites attained their major element composition under conditions of crystal-liquid equilibrium, with the final melt being saturated in H2O, at temperatures close to 770d,C and pressures about 50 MPa. That temperature estimate is in good agreement with values obtained from zircon saturation thermometry. The specific minimum-temperature composition excludes the possibility of widespread transfer of elements during hydrothermal alteration. Minor elements that are relatively very abundant are Li, B, Cs and U, while F, Ga, Ge, Rb, Sn, Ta, W and Tl are quite abundant and P is high for felsic rocks. Sr, Ba, and the trace transition metals Sc to Zn, are low, but not as low as they commonly are in very felsic granites. These trace element abundances, and the EL2O-saturation, resulted from the fractional crystallization of a melt derived by the partial melting of feldspathic greywackes in the crust. The Cornubian granites have compositions very similar to the more felsic rocks of the Koetong Suite of southeastern Australia, where a full range of granites formed at the various stages of magmatic fractionation postulated for the Cornubian granites, can be observed. The operation of fractional crystallization in the Cornubian granites is confirmed by the high P abundances in the feldspars, with P contents of the plagioclase crystals correlating with Ab-con-tent Most of the granites represent solidified melt compositions but within the Dartmoor pluton there is a significant component of granites that are cumulative, shown by their higher Ca contents. The Cornubian plutons define areas of high heat flow, of a magnitude which requires that fractionated magmas were transported laterally from their sources and concentrated in the exposed plutons. The generation of these granite plutons therefore involved magmatic fractionation during the stages of partial melting, removal of unmelted material from that melt, and fractional crystallization. During the later stages of those processes, movement of those magmas occurred on a crustal scale. [source]


    COMPOSITIONAL VARIATION IN ROMAN COLOURLESS GLASS OBJECTS FROM THE BOCHOLTZ BURIAL (THE NETHERLANDS)*

    ARCHAEOMETRY, Issue 3 2009
    D. J. HUISMAN
    We investigated the major and trace element composition and Pb and Sr isotope characteristics of a series of about 20 colourless glass objects from a single high-status Roman burial from the Netherlands (Bocholtz). The major elements show a relatively homogeneous group, with one outlier. This is corroborated by the Sr isotopes. Based on the Sb and Pb content, three major groups can be discerned, with two other outliers. This grouping is corroborated by the contents of the trace elements Bi, Sn, Ag, As and Mo, and by variations in lead isotopic ratios. On the basis of these results, we conclude that the glass of all objects was probably made with sand and lime from the same source. The variation in trace elements and lead isotope composition is most likely the result of variations in the composition of the sulphidic antimony ore(s) that were used to decolourize the glass. The composition of the Bocholtz glass is compared with that of other Roman glass, and implications for production models, trade and use of colourless glass objects are discussed. On the basis of isotopic and major element variation, we conclude that the antimony ore presumably originated from different mines. [source]


    Polymetamorphism, zircon growth and retention of early assemblages through the dynamic evolution of a continental arc in Fiordland, New Zealand

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2009
    J. M. SCOTT
    Abstract The Marguerite Amphibolite and associated rocks in northern Fiordland, New Zealand, contain evidence for retention of Carboniferous metamorphic assemblages through Cretaceous collision of an arc, emplacement of large volumes of mafic magma, high- P metamorphism and then extensional exhumation. The amphibolite occurs as five dismembered aluminous meta-gabbroic xenoliths up to 2 km wide that are enclosed within meta-leucotonalite of the Lake Hankinson Complex. A first metamorphic event (M1) is manifest in the amphibolite as a pervasively lineated pargasite,anorthite,kyanite or corundum ± rutile assemblage, and as diffusion-zoned garnet in pelitic schist xenoliths within the amphibolite. Thin zones of metasomatically Al-enriched leucotonalite directly at the margins of each amphibolite xenolith indicate element redistribution during M1 and equilibration at 6.6 ± 0.8 kbar and 618 ± 25 °C. A second phase of recrystallization (M2) formed patchy and static margarite ± kyanite,staurolite,chlorite,plagioclase,epidote assemblages in the amphibolite, pseudomorphs of coronas in gabbronorite, and thin high-grossular garnet rims in the pelitic schists. Conditions of M2, 8.8 ± 0.6 kbar and 643 ± 27 °C, are recorded from the rims of garnet in the pelitic schists. Cathodoluminescence imaging and simultaneous acquisition of U-Th-Pb isotopes and trace elements by depth-profiling zircon grains from one pelitic schist reveals four stages of growth, two of which are metamorphic. The first metamorphic stage, dated as 340.2 ± 2.2 Ma, is correlated with M1 on the basis that the unusual zircon trace element compositions indicate growth from a metasomatic fluid derived from the surrounding amphibolite during penetrative deformation. A second phase of zircon overgrowth coupled with crosscutting relationships date M2 to between 119 and 117 Ma. The Early Carboniferous event has not previously been recognized in northern Fiordland, whereas the latter event, which has been identified in Early Cretaceous batholiths, their xenoliths, and rocks directly at batholith margins, is here shown to have also affected the country rock. However, the effects of M2 are fragmentary due to limited element mobility, lack of deformation, distance from a heat source and short residence time in the lower crust during peak P and T. It is possible that many parts of the Fiordland continental arc achieved high- P conditions in the Early Cretaceous but retain earlier metamorphic or igneous assemblages. [source]


    Zircon U,Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling project

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2007
    R.-X. CHEN
    Abstract A combined study of zircon morphology, U,Pb ages and Hf isotopes as well as whole-rock major and trace elements was carried out for ultrahigh-pressure (UHP) eclogite and felsic gneiss from the main hole (MH) of the Chinese Continental Scientific Drilling (CCSD) project in the Sulu orogen. The results show contrasting Hf isotope compositions for bimodal UHP metaigneous rocks, pointing to contrasting origins for their protoliths (thus dual-bimodal compositions). The samples of interest were from two continuous core segments from CCSD MH at depths of 734.21,737.16 m (I) and 929.67,932.86 m (II) respectively. Zircon U,Pb dating for four samples from the two core segments yields two groups of ages at 784 ± 17 and 222 ± 3 Ma, respectively, corresponding to protolith formation during supercontinental rifting and metamorphic growth during continental collision. Although the Triassic UHP metamorphism significantly reset the zircon U,Pb system of UHP rocks, the Hf isotope compositions of igneous zircon can be used to trace their protolith origin. Contrasting types of initial Hf isotope ratios are, respectively, correlated with segments I and II, regardless of their lithochemistry. The first type shows positive ,Hf(t) values of 7.8 ± 3.1 to 6.0 ± 3.0, with young Hf model age of 1.03 and 1.11 Ga. The second type exhibits negative ,Hf(t) values of ,6.9 ± 1.6 to ,9.1 ± 1.1, with old Hf model ages of 2.11 and 2.25 Ga. It appears that the UHP rocks from the two segments have protoliths of contrasting origin. Consistent results are also obtained from their trace element compositions suggesting that mid-Neoproterozoic protoliths of bimodal UHP metaigneous rocks formed during supercontinental rifting at the northern margin of the South China Block. Thus, the first type of bimodal magmatism formed by rapid reworking of juvenile crust, whereas the second type of bimodal magmatism was principally generated by rift anatexis of Paleoproterozoic crust. Melting of orogenic lithosphere has potential to bring about bimodal magmatism with contrasting origins. Because arc,continent collision zones are the best place to accumulate both juvenile and ancient crusts, the contrasting types of bimodal magmatism are proposed to occur in an arc,continent collision orogen during the supercontinental rifting, in response to the attempted breakup of the supercontinent Rodinia at c. 780 Ma. [source]


    Annual trace element cycles in calcite,aragonite speleothems: evidence of drought in the western Mediterranean 1200,1100,yr,BP,

    JOURNAL OF QUATERNARY SCIENCE, Issue 5 2005
    Emily A. McMillan
    Abstract Each of two calcitic stalagmites from Grotte de Clamouse, Herault, southern France, displays a discrete aragonite layer dated at around 1100,yr,BP. The layer of fanning aragonite ray crystals is immediately preceded by calcite with Mg and Sr compositions that are uniquely high for the past 3,kyr. Trace element compositions close to the boundary between original aragonite and calcite are consistent with quasi-equilibrium partitioning of trace elements between the phases. Study of modern dripwaters demonstrates that pronounced covariation of Mg/Ca and Sr/Ca ratios in dripwater occurs owing to large amounts of calcite precipitation upflow of the drips that fed the stalagmites. Trace element to Ca ratios are enhanced during seasonally dry periods. Ion microprobe data demonstrate a pronounced covariation of trace elements, including Mg and Sr in calcite, and Sr, U and Ba in aragonite. The mean peak spacing is close to the long-term mean of annual growth rates determined by differences in U-series ages and so the trace element peaks are interpreted as annual. The trace element chemistry of the stalagmites on annual to inter-annual scales thus directly reflects the amounts of prior calcite precipitation, interpreted as an index of aridity. The longer-term context is a multi-decadal period of aridity (1200,1100,yr,BP) possibly correlated with an analogous episode in Central America. The arid period culminated in the nucleation of aragonite, but within a decade was followed by a return to precursor conditions. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Evolution of the winonaite parent body: Clues from silicate mineral trace element distributions

    METEORITICS & PLANETARY SCIENCE, Issue 4 2008
    Christine FLOSS
    Textural evidence in these meteorites, including the presence of a plagioclase/clinopyroxene-rich lithology and coarse-grained olivine lithologies, suggests that they may have experienced some silicate partial melting. However, trace element distributions in these lithologies do not show any clear signatures for such an event. Pyroxene trace element compositions do exhibit systematic trends, with abundances generally lowest in Pontlyfni and highest in Winona. The fact that the same trends are present for both incompatible and compatible trace elements suggests, however, that the systematics are more likely the result of equilibration of minerals with initially heterogeneous and distinct compositions, rather than partial melting of a compositionally homogeneous precursor. The winonaites have experienced brecciation and mixing of lithologies, followed by varying degrees of thermal metamorphism on their parent body. These factors probably account for the variable bulk rare earth element (REE) patterns noted for these meteorites and may have led to re-equilibration of trace elements in different lithologies. [source]


    Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: Petrography and geochemistry

    METEORITICS & PLANETARY SCIENCE, Issue 9-10 2005
    Shiloh Osae
    A representative set of target basalts, including the basalt flows excavated by the crater, and a variety of impact breccias and impact glasses, were analyzed for their major and trace element compositions. Impact glasses and breccias were found inside and outside the crater rim in a variety of morphological forms and shapes. Comparable geochemical patterns of immobile elements (e.g., REEs) for glass, melt rock and basalt indicates minimal fractionation between the target rocks and the impactites. We found only little indication of post-impact hydrothermal alteration in terms of volatile trace element changes. No clear indication of an extraterrestrial component was found in any of our breccias and impact glasses, indicating either a low level of contamination, or a non-chondritic or otherwise iridium-poor impactor. [source]


    Major element and primary sulfur concentrations in Apollo 12 mare basalts: The view from melt inclusions

    METEORITICS & PLANETARY SCIENCE, Issue 5 2005
    Daniel J. BOMBARDIERI
    These lunar basalts are likely to be genetically related by olivine accumulation (Walker et al. 1976a, b). Our results show that major element compositions of melt inclusions from samples 12009, 12075, and 12020 follow model crystallization trends from a parental liquid similar in composition to whole rock sample 12009, thereby partially confirming the olivine accumulation hypothesis. In contrast, the compositions of melt inclusions from samples 12018, 12040, and 12035 fall away from model crystallization trends, suggesting that these samples crystallized from melts compositionally distinct from the 12009 parent liquid and therefore may not be strictly cogenetic with other members of the Apollo 12 picritic basalt suite. Sulfur concentrations in melt inclusions hosted in early crystallized olivine (Fo75) are consistent with a primary magmatic composition of 1050 ppm S, or about a factor of 2 greater than whole rock compositions with 400,600 ppm S. The Apollo 12 picritic basalt parental magma apparently experienced outgassing and loss of S during transport and eruption on the lunar surface. Even with the higher estimates of primary magmatic sulfur concentrations provided by the melt inclusions, the Apollo 12 picritic basalt magmas would have been undersaturated in sulfide in their mantle source regions and capable of transporting chalcophile elements from the lunar mantle to the surface. Therefore, the measured low concentration of chalcophile elements (e.g., Cu, Au, PGEs) in these lavas must be a primary feature of the lunar mantle and is not related to residual sulfide remaining in the mantle during melting. We estimate the sulfur concentration of the Apollo 12 mare basalt source regions to be ,75 ppm, which is significantly lower than that of the terrestrial mantle. [source]


    Oxygen isotopic alteration in Ca-Al-rich inclusions from Efremovka: Nebular or parent body setting?

    METEORITICS & PLANETARY SCIENCE, Issue 8 2004
    T. J. Fagan
    The coarse-grained CAI (CGI-10) is a sub-spherical object composed of elongate, euhedral, normally-zoned melilite crystals ranging up to several hundreds of Pm in length, coarse-grained anorthite and Al, Ti-diopside (fassaite), all with finegrained (,10 ,m across) inclusions of spinel. Similar to many previously examined coarse-grained CAIs from CV chondrites, spinel and fassaite are 16O-rich and melilite is 16O-poor, but in contrast to many previous results, anorthite is 16O-rich. Isotopic composition does not vary with textural setting in the CAI: analyses of melilite from the core and mantle and analyses from a variety of major element compositions yield consistent 16O-poor compositions. CGI-10 originated in an 16O-rich environment, and subsequent alteration resulted in complete isotopic exchange in melilite. The fine-grained CAI (FGI-12) also preserves evidence of a 1st-generation origin in an 16O-rich setting but underwent less severe isotopic alteration. FGI-12 is composed of spinel ± melilite nodules linked by a mass of Al-diopside and minor forsterite along the CAI rim. All minerals are very fine-grained (<5 ,m) with no apparent igneous textures or zoning. Spinel, Al-diopside, and forsterite are 16O-rich, while melilite is variably depleted in 16O (,17,18O from ,-40, to ,5,). The contrast in isotopic distributions in CGI-10 and FGI-12 is opposite to the pattern that would result from simultaneous alteration: the object with finer-grained melilite and a greater surface area/ volume has undergone less isotopic exchange than the coarser-grained object. Thus, the two CAIs were altered in different settings. As the CAIs are adjacent to each other in the meteorite, isotopic exchange in CGI-10 must have preceded incorporation of this CAI in the Efremovka parent body. This supports a nebular setting for isotopic alteration of the commonly observed 16O-poor melilite in coarse-grained CAIs from CV chondrites. [source]


    A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites

    METEORITICS & PLANETARY SCIENCE, Issue 12 2003
    Lars E. BORG
    The models are based on low to high pressure phase relationships estimated from experimental runs and estimates of the composition of silicate Mars from the literature. These models attempt to constrain the mechanisms by which the martian meteorites obtained their superchondritic CaO/Al2O3 ratios and their source regions obtained their parent/daughter (87Rb/86Sr, 147Sm/144Nd, and 176Lu/177Hf) ratios calculated from the initial Sr, Nd, and Hf isotopic compositions of the meteorites. High pressure experiments suggest that majoritic garnet is the liquidus phase for Mars relevant compositions at or above 12 GPa. Early crystallization of this phase from a martian magma ocean yields a liquid characterized by an elevated CaO/Al2O3 ratio and a high Mg#. Olivine-pyroxene-garnet-dominated cumulates that crystallize subsequently will also be characterized by superchondritic CaO/Al2O3 ratios. Melting of these cumulates yields liquids with major element compositions that are similar to calculated parental melts of the martian meteorites. Furthermore, crystallization models demonstrate that some of these cumulates have parent/daughter ratios that are similar to those calculated for the most incompatible-element-depleted source region (i.e., that of the meteorite Queen Alexandra [QUE] 94201). The incompatible-element abundances of the most depleted (QUE 94201-like) source region have also been calculated and provide an estimate of the composition of depleted martian mantle. The incompatible-element pattern of depleted martian mantle calculated here is very similar to the pattern estimated for depleted Earth's mantle. Melting the depleted martian mantle composition reproduces the abundances of many incompatible elements in the parental melt of QUE 94201 (e.g., Ba, Th, K, P, Hf, Zr, and heavy rare earth elements) fairly well but does not reproduce the abundances of Rb, U, Ta and light rare earth elements. The source regions for meteorites such as Shergotty are successfully modeled as mixtures of depleted martian mantle and a late stage liquid trapped in the magma ocean cumulate pile. Melting of this hybrid source yields liquids with major element abundances and incompatible-element patterns that are very similar to the Shergotty bulk rock. [source]


    Combined noble gas and trace element measurements on individual stratospheric interplanetary dust particles

    METEORITICS & PLANETARY SCIENCE, Issue 10 2002
    K. Kehm
    Trace element compositions are generally similar to CI meteorites, with occasional depletions in Zn/Fe with respect to CI. Noble gases were detected in all but one of the IDPs. Noble gas elemental compositions are consistent with the presence of fractionated solar wind. A rough correlation between surface-normalized He abundances and Zn/Fe ratios is observed; Zn-poor particles generally have lower He contents than the other IDPs. This suggests that both elements were lost by frictional heating during atmospheric entry and confirms the view that Zn can serve as an entry-heating indicator in IDPs. [source]


    Petrochemistry of Volcanic Rocks in the Hishikari Mining Area of Southern Japan, with Implications for the Relative Contribution of Lower Crust and Mantle-derived Basalt

    RESOURCE GEOLOGY, Issue 4 2003
    Takahiro Hosono
    Abstract. This study presents the petrographical, mineralogical, and geochemical characteristics of Late Pliocene-Pleistocene volcanic rocks distributed in the Hishikari gold mining area of southern Kyushu, Japan, and discusses their origin and evolution. The Hishikari volcanic rocks (HVR), on the basis of age and chemical compositions, are divided into the Kurosonsan (2.4,1.0 Ma) and Shishimano (1.7,0.5 Ma) Groups, which occur in the northern and southern part of the area, respectively. Each group is composed of three andesites and one rhyodacite. HVR are characterized by high concentrations of incompatible elements compared with other volcanic rocks in southern Kyushu, and have low Sr/Nd and high Th/U, Th/Pb, and U/Pb ratios compared with typical subduction-related arc volcanic rocks. Modal and whole-rock compositions of the HVR change systematically with the age of the rocks. Mafic mineral and augite/hypersthene ratios of the andesites decrease with decreasing age in the Kurosonsan Group, whereas in the Shishimano Group, these ratios are higher in the youngest andesite. Similarly, major and trace element compositions of the younger andesites in the former group are enriched in felsic components, whereas in the latter group the youngest andesite is more mafic than older andesites. Moreover, the crystallization temperature of phenocryst minerals decreases with younger age in the former group, whereas the opposite trend is seen in the latter group. Another significant feature is that rhyodacite in the Shishimano Group is enriched in felsic minerals and incompatible elements, and exhibits higher crystallization temperatures of phenocryst minerals than the rhyodacite of the Kurosonsan Group. Geochemical attributes of the HVR and other volcanic rocks in southern Kyushu indicate that a lower subcontinental crust, characterized by so-called EMI-type Sr-Nd and DUPAL anomaly-like Pb isotopic compositions, is distributed beneath the upper to middle crust of the Shimanto Supergroup. The HVR would be more enriched in felsic materials derived from the lower crust by high-alumina basaltic magma from the mantle than volcanic rocks in other areas of southern Kyushu. The Kurosonsan Group advanced the degree of the lower crust contribution with decreasing age from 51 %, through 61 and 66 % to 77 %. In the Shishimano Group, the younger rhyodacite and andesite are derived from hotter magmas with smaller amounts of lower crust component (58 and 57 %) than the older two andesites (65 % and 68 %). We suggest that the Shishimano rhyodacite, which is considered to be responsible for gold mineralization, was formed by large degree of fractional crystallization of hot basaltic andesite magma with less lower crustal component. [source]


    PAUL-LOUIS CYFFLÉ'S (1724,1806) TERRE DE LORRAINE: A TECHNOLOGICAL STUDY

    ARCHAEOMETRY, Issue 5 2010
    M. MAGGETTI
    Fragments of four Terre de Lorraine biscuit figurines were subjected to porosity analysis, X-ray fluorescence analysis, X-ray diffraction analysis, backscattered-electron image analysis,coupled with energy dispersive spectrometry,and electron backscatter diffraction analysis to determine the porosity, bulk, major, minor and trace element compositions, and the composition and the proportion of their constituent phases. Cyfflé's Terre de Lorraine wares embrace two distinct types of paste, a calcareous and an aluminous,siliceous one. Both are porous (9,25% water adsorption). The former consists of a mixture of different proportions of ground quartz or calcined flint, ground Pb-bearing glass and calcium carbonate with a refractory clay. The firing temperature was between 950 and 1050°C. For the latter, Cyfflé mixed ground pure amorphous SiO2, ground quartz or calcined flint, ground porcelain, ground Na,Ca-glass and coarse-grained kaolinite with a fine-grained kaolinitic clay. The figurines were fired below 1000°C. The result was a porous, hard paste porcelain-like material. Cyfflé's recipes for both pastes can be calculated from the chemical and the modal analyses. [source]


    DEEPLY COLOURED AND BLACK GLASS IN THE NORTHERN PROVINCES OF THE ROMAN EMPIRE: DIFFERENCES AND SIMILARITIES IN CHEMICAL COMPOSITION BEFORE AND AFTER ad 150*

    ARCHAEOMETRY, Issue 5 2009
    V. VAN DER LINDEN
    In this work we attempt to elucidate the chronological and geographical origin of deeply coloured and black glass dating between 100 bc and ad 300 on the basis of their major and trace element compositions. Samples from the western and eastern parts of the Roman Empire were analysed. Analytical data were obtained by means of a scanning electron microscope , energy-dispersive system (SEM,EDS, 63 samples analysed) and laser ablation , inductively coupled plasma , mass spectrometry (LA,ICP,MS, 41 samples analysed). Among the glass fragments analysed, dark brown, dark purple and dark green hues could be distinguished. Only among the dark green fragments could a clear compositional distinction be observed between fragments dated to the periods before and after ad 150. In the early samples (first century bc to first century ad), iron, responsible for the green hue, was introduced by using impure sand containing relatively high amounts of Ti. In contrast, a Ti-poor source of iron was employed, containing Sb, Co and Pb in trace quantities, in order to obtain the dark green colour in the later glass samples. The analytical results obtained by combining SEM,EDS and LA,ICP,MS are therefore consistent with a differentiation of glassmaking recipes, detectable in glass composition, occurring in the period around ad 150. [source]


    DETECTING CHANGES OF CELTIC GOLD SOURCES THROUGH THE APPLICATION OF TRACE ELEMENT AND Pb ISOTOPE LASER ABLATION ANALYSIS OF CELTIC GOLD COINS*

    ARCHAEOMETRY, Issue 4 2009
    C. BENDALL
    This project follows on from an initial study of Celtic gold coins from the Middle Rhine/Moselle region, which was based on material found at the Martberg, a Late Iron Age/Roman sanctuary and settlement (River Moselle, western Germany; Bendall 2003). The earlier work was expanded to encompass over 100 examples of various other regional Celtic gold coinages from the collection of the Römisch-Germanisches Zentralmuseum, Mainz. The alloy (Au,Ag,Cu) and trace element compositions (in particular Ni, Sb and Pt) were determined by EPMA and LA,ICP,MS, respectively, and their Pb isotope signatures were measured by LA,MC,ICP,MS. Of the 28 trace elements measured, only Ni, Sb and Pt were found to show meaningful variations and so only they are presented here. In particular, differences in the Pt/Au ratios between various groups of earlier coinage (imitations of Philippus and Alexander/Nike staters, Sch. 23 and some early Boian coins) on the one hand, and the majority of the Boian and the southern rainbow cup coinages on the other, indicate a significant difference in the gold sources exploited for these regional coinages. The Pb isotope data confirm previous conclusions that the contribution of gold to the total lead in the Au,Ag,Cu coin alloys can be detected, especially for coins with over 70% gold, and show that possible gold sources include both eastern Mediterranean and Alpine sources. Combining the Pb isotope data with the Pt/Au ratios allows the potential gold sources to be further differentiated. [source]


    Geochronology and Geochemistry of Mafic Dikes from Hainan Island and Tectonic Implications

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009
    CAO Jianjin
    Abstract: In the present study, the major and trace element compositions, as well as Sr, Nd isotopic compositions and K-Ar age data in mafic dikes from Hainan Island, China, have been analyzed. Whole-rock K-Ar dating yielded a magmatic duration of 61,98 Ma for mafic dikes. Mafic dikes have a very high concentration of incompatible elements, for example, Ba, Rb, Sr, K, rare earth elements, and especially light rare earth elements (LREE), and negative anomalies of Nb, Ta, and Ti in the normalized trace element patterns. The initial 87Sr/86Sr ratios and ,Sr(t) of the mafic dikes are 0.70634,0.71193 and +27.7 to +112.2, respectively. In the 87Sr/86Sr versus ,Nd(t) diagram, the Hainan Island mafic dikes plot between fields for depleted mantle and enriched mantle type 2. All these characteristics show that the mantle (source region) of mafic dikes in this area experienced metasomatism by fluids relatively enriched in LREE and large ion lithophile elements. The genesis of Hainan Island mafic dikes is explained as a result of the mixing of asthenospheric mantle with lithospheric mantle that experienced metasomatism by the subduction of the Pacific Plate. This is different from the Hainan Island Cenozoic basalts mainly derived from depleted asthenospheric mantle, and possibly, minor metasomatised lithospheric mantle. This study suggests that the Mesozoic and Cenozoic lithospheric revolutions in Hainan Island can be divided into three stages: (1) the compression orogenesis stage before 98 Ma. The dominant factor during this stage is the subduction of the ancient Pacific Plate beneath this area. The lithospheric mantle changed into enriched mantle type 2 by metasomatism; (2) the thinning and extension stage during 61,98 Ma. The dominant factor during this stage is that the asthenospheric mantle invaded and corroded the lithospheric mantle; and (3) the large-scale thinning and extension stage after 61 Ma. The large-scale asthenospheric upwelling results in the strong erupting of Cenozoic basalts, large-scale thinning of the lithosphere, the southward translating and counterclockwise rotating of Hainan Island, and the opening of the South China Sea. [source]


    Evaluating the Provenance of Metasedimentary Rocks of the Jiangxian Group from the Zhongtiao Mountain Using Whole-Rock Geochemistry and Detrital Zircon Hf Isotope

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2009
    Qiugen LI
    Abstract: In this study, whole-rock geochemical and Nd isotopic data, as well as detrital zircon Hf isotopes of Palaeoproterozoic metasedimentary rocks from the Jiangxian Group are presented to evaluate the characteristics of their provenance and the tectonic history. The major and trace element compositions are comparable to Post-Archean upper continental crust (PA-UCC), but have slight enrichment in the LILE, with the exception of Cs and Sr, and a slight depletion in ferromagnesian elements, HFS elements, such as Nb and Ta, and some major elements, such as CaO and Na2O. The geochemical data reveal that the collected metasedimentary rocks have experienced intermediate source weathering with chemical index of alteration values ranging from 72 to 78, varying degrees of K-metasomatism, and post-depositional loss of Na, as well as negligible sorting, and are derived from the weathering of mostly felsic and non-mafic rocks. The selected Lu,Hf isotopic analysis on detrital zircon points to both the Trans-North China Orogen and Eastern Block of the north China craton as the most likely sources for the metasedimentary rocks of the Jiangxian Group. However, a contribution of detritus from the Western Block of the north China craton can be ruled out. The sediments were probably deposited in a back-arc basin within an active continental margin setting. [source]


    REE Compositions of Lower Ordovician Dolomites in Central and North Tarim Basin, NW China: A Potential REE Proxy for Ancient Seawater

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2008
    ZHANG Xuefeng
    Abstract: Rare earth element compositions of Lower Ordovician dolomites in the Central and Northern Tarim Basin are studied. Most dolomite samples are more or less contaminated by clay minerals. Their rare earth element compositions have been consequently changed, showing both seawater-like and non-seawater-like features. The clay contamination should be disposed before the REE data are used. Through ICP-MS and ICP-AES analyses, the REE features are well documented. The clay contamination is quantitatively determined by microscopic investigation, trace elements and REE contents. The dolomites, at least in the Tarim Basin, are thought to be pure when their total LREE contents are less than 3times10,6. Through comparison, the pure dolomites show similarities in REE patterns but differences in REE contents with co-existing pure limestone, which indicates that dolomitization may slightly change the REE compositions. Nevertheless, whatever the change is, the pure dolomites may act as a potential REE proxy for Ordovician seawater, which would be significant for ancient massive dolomite strata that lack limestone. [source]