Effectors

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Effectors

  • allosteric effector
  • downstream effector
  • iii effector
  • immune effector
  • key effector
  • main effector
  • type iii effector

  • Terms modified by Effectors

  • effector caspase
  • effector cd8+ t cell
  • effector cell
  • effector cytokine
  • effector domain
  • effector function
  • effector gene
  • effector mechanism
  • effector memory
  • effector memory cell
  • effector memory t cell
  • effector molecule
  • effector pathway
  • effector phase
  • effector phenotype
  • effector protein
  • effector response
  • effector stage
  • effector system
  • effector t cell
  • effector t cell response

  • Selected Abstracts


    Effector and regulatory mechanisms in allergic contact dermatitis

    ALLERGY, Issue 12 2009
    M. Vocanson
    Allergic contact dermatitis (ACD), one of the commonest occupational diseases, is a T-cell-mediated skin inflammation caused by repeated skin exposure to contact allergens, i.e. nonprotein chemicals called haptens. Allergic contact dermatitis, also referred to as contact hypersensitivity, is mediated by CD8+ T cells, which are primed in lymphoid organs during the sensitization phase and are recruited in the skin upon re-exposure to the hapten. Subsets of CD4+ T cells endowed with suppressive activity are responsible for both the down-regulation of eczema in allergic patients and the prevention of priming to haptens in nonallergic individuals. Therefore, ACD should be considered as a breakdown of the skin immune tolerance to haptens. Recent advances in the pathophysiology of ACD have demonstrated the important role of skin innate immunity in the sensitization process and have revisited the dogma that Langerhans cells are mandatory for CD8+ T-cell priming. They have also introduced mast cells as a pivotal actor in the magnitude of the inflammatory reaction. Finally, the most recent studies address the nature, the mode and the site of action of the regulatory T cells that control the skin inflammation with the aim of developing new strategies of tolerance induction in allergic patients. [source]


    Correction: Memory B cells: Effectors of long-lived immune responses

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2010
    Stuart G. Tangye
    No abstract is available for this article. [source]


    Serum and glucocorticoid-regulated protein kinases: Variations on a theme

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2006
    Maude Tessier
    Abstract The phosphatidylinositol 3, kinase (PI3K)-signaling pathway plays a critical role in a variety of cellular responses such as modulation of cell survival, glucose homeostasis, cell division, and cell growth. PI3K generates important lipid second messengers,phosphatidylinositides that are phosphorylated at the 3, position of their inositol ring head-group. These membrane restricted lipids act by binding with high affinity to specific protein domains such as the pleckstrin homology (PH) domain. Effectors of PI3K include molecules that harbor such domains such as phosphoinositide-dependent kinase (PDK1) and protein kinase B (PKB), also termed Akt. The mammalian genome encodes three different PKB genes (,, ,, and ,; Akt1, 2, and 3, respectively) and each is an attractive target for therapeutic intervention in diseases such as glioblastoma and breast cancer. A second family of three protein kinases, termed serum and glucocorticoid-regulated protein kinases (SGKs), is structurally related to the PKB family including regulation by PI3K but lack a PH domain. However, in addition to PH domains, a second class of 3, phosphorylated inositol phospholipid-binding domains exists that is termed Phox homology (PX) domain: this domain is found in one of the SGKs (SGK3). Here, we summarize knowledge of the three SGK isoforms and compare and contrast them to PKB with respect to their possible importance in cellular regulation and potential as therapeutic targets. J. Cell. Biochem. © 2006 Wiley-Liss, Inc. [source]


    Maternal depression and anxiety effects on the human fetus: Preliminary findings and clinical implications,

    INFANT MENTAL HEALTH JOURNAL, Issue 5 2008
    John N.I. Dieter
    Newborns of depressed and anxious mothers show biobehavioral abnormalities suggesting that maternal psychological distress has negative effects on the fetus. Two studies examined the fetuses of depressed and nondepressed mothers: (a) a cross-sectional investigation of fetal activity during the second and third trimesters and (b) an examination of behavioral and heart rate response to vibratory stimulation in late-gestation fetuses. Fetuses of depressed mothers were more active during the fifth, sixth, and seventh gestational months. Assessment of late-term fetuses consisted of a baseline, trials of vibratory stimulation directed towards measuring habituation, and a poststimulation period. During baseline, the fetuses of depressed mothers exhibited a lower heart rate. During stimulation trials, they showed less total movement and appeared to habituate more often. Approximately 35% of the variance in fetal behavior was accounted for by the mothers' depression and anxiety symptoms. Maternal depression may be linked to greater fetal activity during the second and third trimesters and decreased behavioral responsivity during late gestation. The response of late-term fetuses of depressed mothers to vibratory stimulation may reflect "receptor adaptation/effector fatigue" and not true habitation. Future studies should examine the value of clinical interventions provided to the pregnant mother. [source]


    Histamine-1 receptor is not required as a downstream effector of orexin-2 receptor in maintenance of basal sleep/wake states

    ACTA PHYSIOLOGICA, Issue 3 2010
    M. Hondo
    Abstract Aim:, The effect of orexin on wakefulness has been suggested to be largely mediated by activation of histaminergic neurones in the tuberomammillary nucleus (TMN) via orexin receptor-2 (OX2R). However, orexin receptors in other regions of the brain might also play important roles in maintenance of wakefulness. To dissect the role of the histaminergic system as a downstream mediator of the orexin system in the regulation of sleep/wake states without compensation by the orexin receptor-1 (OX1R) mediated pathways, we analysed the phenotype of Histamine-1 receptor (H1R) and OX1R double-deficient (H1R,/,;OX1R,/,) mice. These mice lack OX1R-mediated pathways in addition to deficiency of H1R, which is thought to be the most important system in downstream of OX2R. Methods:, We used H1R deficient (H1R,/,) mice, H1R,/,;OX1R,/, mice, OX1R and OX2R double-deficient (OX1R,/,;OX2R,/,) mice, and wild type controls. Rapid eye movement (REM) sleep, non-REM (NREM) sleep and awake states were determined by polygraphic electroencephalographic/electromyographic recording. Results:, No abnormality in sleep/wake states was observed in H1R,/, mice, consistent with previous studies. H1R,/,;OX1R,/, mice also showed a sleep/wake phenotype comparable to that of wild type mice, while OX1R,/,; OX2R,/, mice showed severe fragmentation of sleep/wake states. Conclusion:, Our observations showed that regulation of the sleep/wake states is completely achieved by OX2R-expressing neurones without involving H1R-mediated pathways. The maintenance of basal physiological sleep/wake states is fully achieved without both H1 and OX1 receptors. Downstream pathways of OX2R other than the histaminergic system might play an important role in the maintenance of sleep/wake states. [source]


    Integration of diverse inputs in the regulation of Caenorhabditis elegans DAF-16/FOXO

    DEVELOPMENTAL DYNAMICS, Issue 5 2010
    Jessica N. Landis
    Abstract In a remarkably conserved insulin signaling pathway that is well-known for its regulation of longevity in worms, flies, and mammals, the major C. elegans effector of this pathway, DAF-16/FOXO, also modulates many other physiological processes. This raises the question of how DAF-16/FOXO chooses the correct targets to achieve the appropriate response in a particular context. Here, we review current knowledge of tissue-specificity and interacting partners that modulate DAF-16/FOXO functional output. Developmental Dynamics 239:1405,1412, 2010. © 2010 Wiley-Liss, Inc. [source]


    Churchill and Sip1a repress fibroblast growth factor signaling during zebrafish somitogenesis

    DEVELOPMENTAL DYNAMICS, Issue 2 2010
    Fatma O. Kok
    Abstract Cell-type specific regulation of a small number of growth factor signal transduction pathways generates diverse developmental outcomes. The zinc finger protein Churchill (ChCh) is a key effector of fibroblast growth factor (FGF) signaling during gastrulation. ChCh is largely thought to act by inducing expression of the multifunctional Sip1 (Smad Interacting Protein 1). We investigated the function of ChCh and Sip1a during zebrafish somitogenesis. Knockdown of ChCh or Sip1a results in misshapen somites that are short and narrow. As in wild-type embryos, cycling gene expression occurs in the developing somites in ChCh and Sip1a compromised embryos, but expression of her1 and her7 is maintained in formed somites. In addition, tail bud fgf8 expression is expanded anteriorly in these embryos. Finally, we found that blocking FGF8 restores somite morphology in ChCh and Sip1a compromised embryos. These results demonstrate a novel role for ChCh and Sip1a in repression of FGF activity. Developmental Dynamics 239:548,558, 2010. © 2009 Wiley-Liss, Inc. [source]


    Characterization of p70 S6 kinase 1 in early development of mouse embryos

    DEVELOPMENTAL DYNAMICS, Issue 12 2009
    Xiao-Yan Xu
    Abstract The mTOR kinase controls cell growth, proliferation, and survival through two distinct multiprotein complexes mTORC1 and mTORC2. p70 S6 Kinase 1 (S6K1) is characterized as downstream effector of mTOR. Until recently, the connection between S6K1 and mTORC1 /mTORC2 during the early development of mouse embryos has not been well elucidated. Here, the expression level of total S6K1 and its phosphorylation at Thr389 was determined in four phases of one-cell embryos. S6K1 was active throughout the cell cycle especially with higher activity in G2 and M phases. Rapamycin decreased the activity of M-phase promoting factor (MPF) and delayed the first mitotic cleavage. Down-regulating mTOR and raptor reduced S6K1 phosphorylation at Thr389 in one-cell embryos. Furthermore, rapamycin and microinjection of raptor shRNA decreased the immunofluorescent staining of Thr389 phospho-S6K1. It is proposed that mTORC1 may be involved in the control of MPF by regulating S6K1 during the early development of mouse embryos. Developmental Dynamics 238:3025,3034, 2009. © 2009 Wiley-Liss, Inc. [source]


    Oxidative stress as a multiple effector in Fanconi anaemia clinical phenotype

    EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 2 2005
    Giovanni Pagano
    Abstract:, Fanconi anaemia (FA) is a genetic disease characterised by bone marrow failure with excess risk of myelogenous leukaemia and solid tumours. A widely accepted notion in FA research invokes a deficiency of response to DNA damage as the fundamental basis of the ,crosslinker sensitivity' observed in this disorder. However, such an isolated defect cannot readily account for the full cellular and clinical phenotype, which includes a number of other abnormalities, such as malformations, endocrinopathies, and typical skin spots. An extensive body of evidence pointing toward an involvement of oxidative stress in the FA phenotype includes the following: (i) In vitro and ex vivo abnormalities in a number of redox status endpoints; (ii) the functions of several FA proteins in protecting cells from oxidative stress; (iii) redox-related toxicity mechanisms of the xenobiotics evoking excess toxicity in FA cells. The clinical features in FA and the in vivo abnormalities of redox parameters are here reconsidered in view of the pleiotropic clinical phenotype and known biochemical and molecular links to an in vivo prooxidant state, which causes oxidative damage to biomolecules, resulting in an excessive number of acquired abnormalities that may overwhelm the cellular repair capacity rather than a primary deficiency in DNA repair. FA may thus represent a unique model disease in testing the integration between the acquisition of macromolecular damage as a result of oxidative stress and the ability of the mammalian cell to respond effectively to such damage. [source]


    Statins inhibit NK-cell cytotoxicity by interfering with LFA-1-mediated conjugate formation

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2009
    Patrick C. Raemer
    Abstract Inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A reductase, commonly referred to as statins, are inhibitors of cholesterol biosynthesis. They are broadly used for treating hypercholesterolemia and for prevention of cardio- and cerebrovascular diseases. Recent publications show that statins also act as immunomodulatory drugs. Here, we show that lipophilic statins inhibit NK-cell degranulation and cytotoxicity. This effect was reversible by addition of substrates of isoprenylation, but not by addition of cholesterol. In NK-target cell conjugates intracellular Ca2+ flux was unaffected by statin treatment. However, statins strongly reduced the amount of conjugate formation between NK and target cells. This inhibition was paralleled by a statin-dependent inhibition of LFA-1-mediated adhesion and a reduction of NK-cell polarization. This demonstrates that statins impair the formation of effector,target cell conjugates resulting in the disruption of early signaling and the loss of NK-cell cytotoxicity. [source]


    Homeostatic regulation of T effector to Treg ratios in an area of seasonal malaria transmission

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2009
    Olivia C. Finney
    Abstract An important aspect of clinical immunity to malaria is the ability to down-regulate inflammatory responses, once parasitaemia is under control, in order to avoid immune-mediated pathology. The role of classical (CD4+CD25+CD127lo/,FOXP3+) Treg in this process, however, remains controversial. Thus, we have characterized the frequency, phenotype and function of Treg populations, over time, in healthy individuals in The Gambia. We observed that both the percentage and the absolute number of CD4+FOXP3+CD127lo/, T cells were higher among individuals living in a rural village with highly seasonal malaria transmission than among individuals living in an urban area where malaria rarely occurs. These CD4+FOXP3+CD127lo/, T cells exhibited an effector memory and apoptosis-prone phenotype and suppressed cytokine production in response to malaria antigen. Cells from individuals exposed to malaria expressed significantly higher levels of mRNA for forkhead box P3 and T-box 21 (T-BET) at the end of the malaria transmission season than at the end of the non-transmission season. Importantly, the ratio of T-BET to forkhead box P3 was remarkably consistent between populations and over time, indicating that in healthy individuals, a transient increase in Th1 responses during the malaria transmission season is balanced by a commensurate Treg response, ensuring that immune homeostasis is maintained. [source]


    FCRL6 distinguishes mature cytotoxic lymphocytes and is upregulated in patients with B-cell chronic lymphocytic leukemia

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2008
    Daniel M. Schreeder
    Abstract Fc receptor-like 6 (FCRL6), the most recently characterized member of the FCRL family, is a cell surface glycoprotein with tyrosine-based regulatory potential. An extensive survey of human hematopoietic tissues disclosed that FCRL6 expression by NK- and T-cell subpopulations increases as a function of differentiation and is remarkably restricted to mature lymphocytes with cytotoxic capability. In particular, FCRL6 distinguishes perforin-expressing CD56dim NK cells, V,1+ and V,2+ ,, T cells, effector and effector memory CD8+ T cells, and rare cytotoxic CD4+ T cells in adult tissues. Analysis of this receptor in B-cell chronic lymphocytic leukemia (CLL) was also performed. FCRL6 was found to mark significantly expanded populations of cytotoxic CD8+ T, CD4+ T, and NK cells in patients with CLL. Despite sequence homology with the known Fc receptors for IgG and IgE, FCRL6 did not bind Ig. Although FCRL6 can be tyrosine-phosphorylated, its antibody-mediated ligation was unable to influence cellular activation. Collectively, these results demonstrate that FCRL6 is a distinct indicator of cytotoxic effector lymphocytes that is upregulated in diseases characterized by chronic immune stimulation. [source]


    Polyfunctional HCV-specific T-cell responses are associated with effective control of HCV replication

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2008
    Donatella Ciuffreda
    Abstract HCV infection has a severe course of disease in HIV/HCV co-infection and in liver transplant recipients. However, the mechanisms involved remain unclear. Here, we evaluated functional profiles of HCV-specific T-cell responses in 86 HCV mono-infected patients, 48 HIV/HCV co-infected patients and 42 liver transplant recipients. IFN-, and IL-2 production and ability of CD4 and CD8 T cells to proliferate were assessed after stimulation with HCV-derived peptides. We observed that HCV-specific T-cell responses were polyfunctional in HCV mono-infected patients, with presence of proliferating single IL-2-, dual IL-2/IFN-, and single IFN-,-producing CD4+ and dual IL-2/IFN-, and single IFN-,-producing CD8+ cells. In contrast, HCV-specific T-cell responses had an effector profile in HIV/HCV co-infected individuals and liver transplant recipients with absence of single IL-2-producing HCV-specific CD4+ and dual IL-2/IFN-,-producing CD8+ T cells. In addition, HCV-specific proliferation of CD4+ and CD8+ T cells was severely impaired in HIV/HCV co-infected patients and liver transplant recipients. Importantly, "only effector" T-cell responses were associated with significantly higher HCV viral load and more severe liver fibrosis scores. Therefore, the present results suggest that immune-based mechanisms may contribute to explain the accelerated course of HCV infection in conditions of HIV-1 co-infection and liver transplantation. [source]


    Intradermal NKT cell activation during DNA priming in heterologous prime-boost vaccination enhances T cell responses and protection against Leishmania

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2008
    Blaise Dondji
    Abstract Heterologous prime-boost vaccination employing DNA-vaccinia virus (VACV) modality using the Leishmania homologue of receptors for activated C,kinase (LACK) (p36) antigen has been shown to elicit protective immunity against both murine cutaneous and visceral leishmaniasis. However, DNA priming is known to have limited efficacy; therefore in the current study the effect of NKT cell activation using ,-galactosyl-ceramide (,GalCer) during intradermal DNAp36 priming was examined. Vaccinated mice receiving ,GalCer,+ DNAp36 followed by a boost with VVp36 appeared to be resolving their lesions and had at ten- to 20-fold higher reductions in parasite burdens. NKT cell activation during ,GalCer,+ DNAp36 priming resulted in higher numbers of antigen-reactive effector CD4+ and CD8+ T cells producing granzyme and IFN-,, with lower levels of IL-10. Although immunodepletion studies indicate that both CD4 and CD8 T cells provide protection in the vaccinated mice, the contribution of CD4+ T cells was significantly increased in mice primed with DNAp36 together with ,GalCer. Notably 5,months after boosting, mice vaccinated with DNAp36,+ ,GalCer continued to show sustained and heightened T cell immune responses. Thus, heterologous prime-boost vaccination using ,GalCer during priming is highly protective against murine cutaneous leishmaniasis, resulting in the heightened activation and development of CD4 and CD8 T cells (effector and memory T cells). [source]


    GITR/GITRL: More than an effector T cell co-stimulatory system

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2007
    Giuseppe Nocentini
    Abstract Glucocorticoid-induced TNFR-related protein (GITR) is a member of the TNFR superfamily, expressed in several cells and tissues including T,lymphocytes, NK cells and antigen-presenting cells (APC). GITR activation, upon interaction with its ligand (GITRL), functions as a co-activating signal. GITRL is mainly expressed on APC and GITR/GITRL interaction is important for the development of immune response. This review summarizes recent results about the GITR/GITRL system, focusing on the interplay between APC, effector and regulatory T cells. [source]


    Phosphorylation of Artemis following irradiation-induced DNA damage

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2004
    Catherine Poinsignon
    Abstract Artemis is a DNA repair factor required for V(D)J recombination, repair of DNA damage induced by ionizing radiation (IR) or radiomimetic drugs, and the maintenance of genome integrity. During V(D)J recombination, Artemis participates in the resolution of hairpin-sealed coding ends, a step crucial to the constitution of the gene encoding for the antigen receptor of lymphocytes. The precise role of Artemis in the repair of IR-induced DNA damage remains to be elucidated. Here we show that Artemis is constitutively phosphorylated in cultured cells and undergoes additional phosphorylation events after irradiation. The IR-induced phosphorylation is mainly, although not solely, dependent on Ataxia-telangiectasia-mutated kinase (ATM). The physiological role of these phosphorylation events remains unknown, as in vitro -generated Artemis mutants, which present impaired IR-induced phosphorylation, still display an activity sufficient to complement the V(D)J recombination defect and the increased radiosensibility of Artemis-deficient cells. Thus, Artemis is an effector of DNA repair that can be phosphorylated by ATM, and possibly by DNA-PKcs and ATR depending upon the type of DNA damage. [source]


    Phenotypic classification of human CD8+ T,cells reflecting their function: inverse correlation between quantitative expression of CD27 and cytotoxic effector function

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2004
    Hiroko Tomiyama
    Abstract Phenotypic classification of human CD8+ T,cells using three cell surface markers, CD27, CD28 and CD45RA, was recently suggested to be useful for identification of naive, memory and effector CD8+ T,cells. However, it still remains unclear whether such classification precisely reflects functional classification of CD8+ T,cells. To clarify this, we characterized each CD27CD28CD45RA subset of total and human cytomegalovirus (HCMV)-specific CD8+ T,cells by analyzing the expression of perforin and two chemokine receptors, CCR5 and CCR7, as well as their function. An inverse correlation between perforin and CD27 expression was found in all four CD28CD45RA subsets. Therefore, to achieve a phenotypic classification of CD8+ T,cells that moreprecisely reflects their function, the CD27+ subset was divided into CD27low and CD27high subsets based on the expression level of CD27. Functional and flow cytometric analyses of CD27CD28CD45RA subsets showed that this phenotypic classification reflects functional classification of CD8+ T,cells. HCMV-specific CD8+ T,cells from healthy HCMV-seropositive individuals were predominantly found in effector and memory/effector subsets, indicating that HCMV-specific effector CD8+ T,cells are actively induced by HCMV replication in healthy HCMV carriers. Phenotypic analyses of CD8+ T,cells using this classification will enable the characterization of antigen-specific CD8+ T,cells. [source]


    Lymphotoxin,, receptor-Ig fusion protein treatment blocks actively induced, but not adoptively transferred, uveitis in Lewis rats

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2003
    Hui Shao
    Abstract Previous studies have shown that treatment of rodents with a lymphotoxin (LT),, receptor-Ig fusion protein (LT,R-Ig), which binds to both LT and LIGHT, prevents the development of autoimmune diseases, but the mechanism involved is unclear. To explore the potential role of LT or LIGHT in the pathogenesis of autoimmune uveitis, uveitis was induced in Lewis rats either by immunization with an uveitogenic peptide, R16, derived from the interphotoreceptor retinoid-binding protein, or by adoptive transfer of R16-specific T,cells. Interestingly, LT,R-Ig treatment completely prevented actively induced uveitis, but not the adoptively transferred disease. We also show that LT,R-Ig-treated R16-injected rats had a significantly decreased T,cell response to R16 and that herpesvirus entry mediator (HVEM)-Ig, a fusion protein that blocks LIGHT, also inhibited disease development. Our results suggest that LT or LIGHT plays a critical role in the induction, rather than the effector, phase of the disease. [source]


    NF-ATc2 induces apoptosis in Burkitt's lymphoma cells through signaling via the B cell antigen receptor

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2003
    Eisaku Kondo
    Abstract Cross-linking of the B cell antigen receptor (BCR) with an anti-IgM antibody has been shown to induce dramatic apoptosis in type I Burkitt's lymphoma (BL) cells. However, the apoptotic mechanism triggered via BCR remains unknown. Here we reports a mechanism of BCR ligation-induced apoptosis involving protein phosphatase calcineurin and its specific substrate, transcriptional factor NF-AT. In response to BCR cross-linking, endogenous calcineurin was rapidly activated, and this facilitated nuclear translocation of NF-ATc2, a subtype of NF-AT members. Interestingly, nuclear-imported NF-ATc2 functioned pro-apoptotically in BL cells. The effect of NF-ATc2 was efficiently blocked with FK506, which prevented its nuclear translocation through inactivation of calcineurin. In addtion, TR3 induction during BCR cross-linking was reduced by FK506 and the VIVIT peptide, which is a highly selective inhibitor for NF-AT. This strongly suggests that activation of NF-ATc2 by calcineurin is essential for TR3 recruitment, and that TR3 can be considered as a candidate for death effector in BCR-mediated apoptosis. Therefore, NF-ATc2 plays a crucial role in BCR-mediated apoptosis in type IBL, providing greater insight into unique BL characteristics through BCR signaling. [source]


    Toward an Allosteric Metallated Container

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2009
    Helga Szelke
    Abstract Polytopic ligands L1 and L2 in which three 2,2,-bipyridine units are linked to a central tris(pyrid-2-yl)amine (L1) or tris(pyrid-2-yl)methanol (L2) moiety by alkyl spacers were prepared by multistep organic syntheses. The parent tris(pyrid-2-yl)-type ligands were shown to be modest-to-good chelators for Zn2+ and Cu2+ ions in solution, and bi- and tridentate N-coordination was confirmed by crystal structures of CuII and RuII complexes, respectively. FeII and RuII smoothly form stable, cage-like 1:1 complexes with L1 and L2, in which the metal ion is coordinated to the tris(bpy) site of the ligands. The vacant tris(pyrid-2-yl) site of these complexes is, however, a poor donor site for Zn2+ and Cu2+ ions. In addition, FeII modulates the coordination behaviour of the tris(pyrid-2-yl) site toward Zn2+: Whereas tris(5-methylpyrid-2-yl)amine forms a 2:1 complex with Zn2+ in CH2Cl2, [Fe(L1)]2+ forms a 1:1 Zn complex. Spectrophotometric titrations suggest that [Fe(L2)]2+ forms a polynuclear Zn2+ complex in CH2Cl2, possibly involving bridging coordination of the alcohol OH group, which contrasts the smooth formation of a 2:1 complex of the parent tris(pyrid-2-yl)-type ligand with Zn. FeII might therefore be considered as an allosteric effector, which modulates the metal binding properties of the second tris(pyrid-2-yl) site of L1 and L2. Contrary to expectation, Zn2+ and Cu2+ appear to associate weakly with donor atoms directed toward the exterior of the cage-like complexes [Fe(Ln)]2+ and [Ru(L1)]2+, rather than locating in the interior of the container by tripodal coordination to the tris(pyrid-2-yl) site.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Negative cross-talk between presynaptic adenosine and acetylcholine receptors

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006
    A. V. Shakirzyanova
    Abstract Functional interactions between presynaptic adenosine and acetylcholine (ACh) autoreceptors were studied at the frog neuromuscular junction by recording miniature end-plate potentials (MEPPs) during bath or local application of agonists. The frequency of MEPPs was reduced by adenosine acting on presynaptic adenosine A1 receptors (EC50 = 1.1 µm) or by carbachol acting on muscarinic M2 receptors (EC50 = 1.8 µm). However, carbachol did not produce the depressant effect when it was applied after the action of adenosine had reached its maximum. This phenomenon implied that the negative cross-talk (occlusion) had occurred between A1 and M2 receptors. Moreover, the occlusion was receptor-specific as ATP applied in the presence of adenosine continued to depress MEPP frequency. Muscarinic antagonists [atropine or 1-[[2-[(diethylamino)methyl)-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido [2,3-b][1,4]benzodiazepine-6-one) (AFDX-116)] had no effect on the inhibitory action of adenosine and adenosine antagonists [8-(p -sulfophenyl)theophylline (8-SPT) or 1,3-dipropyl-8-cyclopentylxanthine (DPCPX)] had no effect on the action of carbachol. These data suggested that membrane,delimited interactions did not occur between A1 and M2 receptors. Both carbachol and adenosine similarly inhibited quantal release triggered by high potassium, ionomycin or sucrose. These results indicated a convergence of intracellular pathways activated by M2 and A1 receptors to a common presynaptic effector located downstream of Ca2+ influx. We propose that the negative cross-talk between two major autoreceptors could take place during intense synaptic activity and thereby attenuate the presynaptic inhibitory effects of ACh and adenosine. [source]


    CXCL10-induced cell death in neurons: role of calcium dysregulation

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2006
    Yongjun Sui
    Abstract Chemokines play a key role in the regulation of central nervous system disease. CXCL10 over-expression has been observed in several neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease and HIV-associated dementia. More recent studies by others and us have shown that CXCL10 elicits apoptosis in fetal neurons. The mechanism of CXCL10-mediated neurotoxicity, however, remains unclear. In this study, we provide evidence for the direct role of Ca2+ dysregulation in CXCL10-mediated apoptosis. We demonstrate that treatment of fetal neuronal cultures with exogenous CXCL10 produced elevations in intracellular Ca2+ and that this effect was modulated via the binding of CXCL10 to its cognate receptor, CXCR3. We further explored the association of intracellular Ca2+ elevations with the caspases that are involved in CXC10-induced neuronal apoptosis. Our data showed that increased Ca2+, which is available for uptake by the mitochondria, is associated with membrane permeabilization and cytochrome c release from this compartment. The released cytochrome c then activates the initiator active caspase-9. This initiator caspase sequentially activates the effector caspase-3, ultimately leading to apoptosis. This study identifies the temporal signaling cascade involved in CXCL10-mediated neuronal apoptosis and provides putative targets for pharmaceutical intervention of neurological disorders associated with CXCL10 up-regulation. [source]


    Plakoglobin-dependent disruption of the desmosomal plaque in pemphigus vulgaris

    EXPERIMENTAL DERMATOLOGY, Issue 6 2007
    Alain De Bruin
    Abstract:, We recently reported that the pathogenesis of pemphigus vulgaris (PV), an autoimmune blistering skin disorder, is driven by the accumulation of c-Myc secondary to abrogation of plakoglobin (PG)-mediated transcriptional c-Myc suppression. PG knock-out mouse keratinocytes express high levels of c-Myc and resemble PVIgG-treated wild-type keratinocytes in most respects. However, they fail to accumulate nuclear c-Myc and loose intercellular adhesion in response to PVIgG-treatment like wild-type keratinocytes. This suggested that PG is also required for propagation of the PVIgG-induced events between augmented c-Myc expression and acantholysis. Here, we addressed this possibility by comparing PVIgG-induced changes in the desmosomal organization between wild-type and PG knock-out keratinocytes. We found that either bivalent PVIgG or monovalent PV-Fab (known to trigger blister formation in vivo) disrupt the linear organization of all major desmosomal components along cell borders in wild-type keratinocytes, simultaneously with a reduction in intercellular adhesive strength. In contrast, PV-Fab failed to affect PG knock-out keratinocytes while PVIgG cross-linked their desmosomal cadherins without significantly affecting desmoplakin. These results identify PG as a principle effector of the PVIgG-induced signals downstream of c-Myc that disrupt the desmosomal plaque at the plasma membrane. [source]


    ERK activation by mechanical strain is regulated by the small G proteins rac-1 and rhoA

    EXPERIMENTAL DERMATOLOGY, Issue 2 2004
    Julien Laboureau
    Abstract: Physical forces play an important role in regulating cell functions. We applied mechanical strain to human fibroblasts by magnetic attraction of superparamagnetic arginine-glycine-aspartic acid (RGD)-coated beads. We confirmed that the MAP kinases Erk and p38 are activated by mechanical strain, and went further by demonstrating the activation of Elk-1 by mechanical strain, mainly through a MEK-Erk pathway. Transfection of a dominant negative form of the G protein rac-1 (rac T17N), and inhibition of PI3K, an effector of rac-1, efficiently prevented Elk-1 activation by mechanical forces. Transfection with C3 transferase, known to inhibit rhoA, and inhibition of rock (a downstream effector of rhoA), gave similar results. However, contrary to the active form of rhoA (rho G14V), transfection of the active form of rac-1 (rac G12V) induced Elk activation and mimicked the effects of mechanical strain. These results point out that the two small G proteins rhoA and rac-1 participate in cell sensitivity to mechanical strain and lead to the modulation of the Erk pathway. [source]


    Downregulation of protease-activated receptor-1 in human lung fibroblasts is specifically mediated by the prostaglandin E2 receptor EP2 through cAMP elevation and protein kinase A

    FEBS JOURNAL, Issue 14 2008
    Elena Sokolova
    Many cellular functions of lung fibroblasts are controlled by protease-activated receptors (PARs). In fibrotic diseases, PAR-1 plays a major role in controlling fibroproliferative and inflammatory responses. Therefore, in these diseases, regulation of PAR-1 expression plays an important role. Using the selective prostaglandin EP2 receptor agonist butaprost and cAMP-elevating agents, we show here that prostaglandin (PG)E2, via the prostanoid receptor EP2 and subsequent cAMP elevation, downregulates mRNA and protein levels of PAR-1 in human lung fibroblasts. Under these conditions, the functional response of PAR-1 in fibroblasts is reduced. These effects are specific for PGE2. Activation of other receptors coupled to cAMP elevation, such as ,-adrenergic and adenosine receptors, does not reproduce the effects of PGE2. PGE2 -mediated downregulation of PAR-1 depends mainly on protein kinase A activity, but does not depend on another cAMP effector, the exchange protein activated by cAMP. PGE2 -induced reduction of PAR-1 level is not due to a decrease of PAR-1 mRNA stability, but rather to transcriptional regulation. The present results provide further insights into the therapeutic potential of PGE2 to specifically control fibroblast function in fibrotic diseases. [source]


    A novel N-terminal hydrophobic motif mediates constitutive degradation of serum- and glucocorticoid-induced kinase-1 by the ubiquitin,proteasome pathway

    FEBS JOURNAL, Issue 13 2006
    Agata M. Bogusz
    Serum- and glucocorticoid-induced protein kinase-1 (SGK-1) plays a critical role in regulation of the epithelial sodium channel, ENaC. SGK-1 also shares significant catalytic domain homology with protein kinase B (PKB/AKT-1) and is a downstream effector of antiapoptotic phosphoinositide 3-kinase signaling. Steady-state levels of an active SGK-1 are tightly regulated by rapid transcriptional activation and post-translational modification including phosphorylation. We show here that endogenous SGK-1 protein is polyubiquitinated and rapidly degraded by the 26S proteasome. In contrast to other rapidly degraded kinases, neither the catalytic activity of SGK-1 nor activation site phosphorylation was required for its ubiquitin modification and degradation. Instead, SGK-1 degradation required a lysine-less six-amino-acid (amino acids 19,24) hydrophobic motif (GMVAIL) within the N-terminal domain. Deletion of amino acids 19,24 significantly increased the half-life of SGK1 and prevented its ubiquitin modification. Interestingly, this minimal region was also required for the association of SGK-1 with the endoplasmic reticulum. Ubiquitin modification and degradation of SGK-1 were increasingly inhibited by the progressive mutation of six N-terminal lysine residues surrounding the GMVAIL motif. Mutation of all six lysines to arginine did not disrupt the subcellular localization of SGK-1 despite a significant decrease in ubiquitination, implying that this modification per se was not required for targeting to the endoplasmic reticulum. These results suggest that constitutive ubiquitin-mediated degradation of SGK-1 is an important mechanism regulating its biological activity. [source]


    Tet repressor mutants with altered effector binding and allostery

    FEBS JOURNAL, Issue 17 2005
    Eva-Maria Henßler
    To learn about the correlation between allostery and ligand binding of the Tet repressor (TetR) we analyzed the effect of mutations in the DNA reading head,core interface on the effector specific TetRi2 variant. The same mutations in these subdomains can lead to completely different activities, e.g. the V99G exchange in the wild-type leads to corepression by 4-ddma-atc without altering DNA binding. However, in TetRi2 it leads to 4-ddma-atc dependent repression in combination with reduced DNA binding in the absence of effector. The thermodynamic analysis of effector binding revealed decreased affinities and positive cooperativity. Thus, mutations in this interface can influence DNA binding as well as effector binding, albeit both ligand binding sites are not in direct contact to these altered residues. This finding represents a novel communication mode of TetR. Thus, allostery may not only operate by the structural change proposed on the basis of the crystal structures. [source]


    Dinucleoside polyphosphates stimulate the primer independent synthesis of poly(A) catalyzed by yeast poly(A) polymerase

    FEBS JOURNAL, Issue 21 2002
    Marķa A. Günther Sillero
    Novel properties of the primer independent synthesis of poly(A), catalyzed by the yeast poly(A) polymerase are presented. The commercial enzyme from yeast, in contrast to the enzyme from Escherichia coli, is unable to adenylate the 3,-OH end of nucleosides, nucleotides or dinucleoside polyphosphates (NpnN). In the presence of 0.05 mm ATP, dinucleotides (at 0.01 mm) activated the enzyme velocity in the following decreasing order: Gp4G, 100; Gp3G, 82; Ap6A, 61; Gp2G, 52; Ap4A, 51; Ap2A, 41; Gp5G, 36; Ap5A, 27; Ap3A, 20, where 100 represents a 10-fold activation in relation to a control without effector. The velocity of the enzyme towards its substrate ATP displayed sigmoidal kinetics with a Hill coefficient (nH) of 1.6 and a Km(S0.5) value of 0.308 ± 0.120 mm. Dinucleoside polyphosphates did not affect the maximum velocity (Vmax) of the reaction, but did alter its nH and Km(S0.5) values. In the presence of 0.01 mm Gp4G or Ap4A the nH and Km(S0.5) values were (1.0 and 0.063 ± 0.012 mm) and (0.8 and 0.170 ± 0.025 mm), respectively. With these kinetic properties, a dinucleoside polyphosphate concentration as low as 1 µm may have a noticeable activating effect on the synthesis of poly(A) by the enzyme. These findings together with previous publications from this laboratory point to a potential relationship between dinucleoside polyphosphates and enzymes catalyzing the synthesis and/or modification of DNA or RNA. [source]


    Toxicity to Candida albicans mediated by human serum and peripheral blood mononuclear cells

    FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 3 2006
    Joseph M. Bliss
    Abstract This study evaluates the conditions in which peripheral blood mononuclear cells mediate toxicity to Candida albicans opsonized with heat-inactivated human serum. Serum concentrations as low as 1% resulted in 50% inhibition of C. albicans metabolic activity after incubation with peripheral blood mononuclear cells at an effector to target ratio of 8. Measurable inhibition was also achieved at lower effector to target ratios and lower serum concentrations, and at least a portion of the metabolic inhibition reflected fungal cell death. Depletion of C. albicans -specific antibody decreased the toxic effect while opsonization with purified human IgG restored toxicity, and cell,cell contact between peripheral blood mononuclear cells and fungus was required. Depletion of or enrichment for monocytes from the peripheral blood mononuclear cells preparation diminished the toxic effect and the monocytic cell line, THP-1, was likewise incapable of toxicity. These studies provide evidence that antibody augments antifungal host defense and underscore the complex interrelationship between humoral and cellular immunity in these infections. [source]


    Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors

    FEMS MICROBIOLOGY REVIEWS, Issue 2 2006
    Antonio J. Molina-Henares
    Abstract Members of the IclR family of regulators are proteins with around 250 residues. The IclR family is best defined by a profile covering the effector binding domain. This is supported by structural data and by a number of mutants showing that effector specificity lies within a pocket in the C-terminal domain. These regulators have a helix-turn-helix DNA binding motif in the N-terminal domain and bind target promoters as dimers or as a dimer of dimers. This family comprises regulators acting as repressors, activators and proteins with a dual role. Members of the IclR family control genes whose products are involved in the glyoxylate shunt in Enterobacteriaceae, multidrug resistance, degradation of aromatics, inactivation of quorum-sensing signals, determinants of plant pathogenicity and sporulation. No clear consensus exists on the architecture of DNA binding sites for IclR activators: the MhpR binding site is formed by a 15-bp palindrome, but the binding sites of PcaU and PobR are three perfect 10-bp sequence repetitions forming an inverted and a direct repeat. IclR-type positive regulators bind their promoter DNA in the absence of effector. The mechanism of repression differs among IclR-type regulators. In most of them the binding sites of RNA polymerase and the repressor overlap, so that the repressor occludes RNA polymerase binding. In other cases the repressor binding site is distal to the RNA polymerase, so that the repressor destabilizes the open complex. [source]