Home About us Contact | |||
Effective Capacitance (effective + capacitance)
Selected AbstractsThe Effects of Moisture in Low-Voltage Organic Field-Effect Transistors Gated with a Hydrous Solid ElectrolyteADVANCED FUNCTIONAL MATERIALS, Issue 16 2010Nikolai Kaihovirta Abstract The concept of using ion conducting membranes (50,150 ,m thick) for gating low-voltage (1 V) organic field-effect transistors (OFETs) is attractive due to its low-cost and large-area manufacturing capabilities. Furthermore, the membranes can be tailor-made to be ion conducting in any desired way or pattern. For the electrolyte gated OFETs in general, the key to low-voltage operation is the electrolyte "insulator" (the membrane) that provides a high effective capacitance due to ionic polarization within the insulator. Hydrous ion conducting membranes are easy to process and readily available. However, the role of the water in combination with the polymeric semiconductor has not yet been fully clarified. In this work electrical and optical techniques are utilized to carefully monitor the electrolyte/semiconductor interface in an ion conducting membrane based OFET. The main findings are that 1) moisture plays a major part in the transistor operation and careful control of both the ambient atmosphere and the potential differences between the electrodes are required for stable and consistent device behavior, 2) the obtained maximum effective capacitance (5 ,F cm,2) of the membrane suggests that the electric double layer is distributed over a broad region within the polyelectrolyte, and 3) electromodulation spectroscopy combined with current,voltage characteristics provide a method to determine the threshold gate voltage from an electrostatic field-effect doping to a region of (irreversible) electrochemical perturbation of the polymeric semiconductor. [source] Insulator Polarization Mechanisms in Polyelectrolyte-Gated Organic Field-Effect TransistorsADVANCED FUNCTIONAL MATERIALS, Issue 20 2009Oscar Larsson Abstract Electrolyte-gated organic field-effect transistors (OFETs) hold promise for robust printed electronics operating at low voltages. The polarization mechanism of thin solid electrolyte films, the gate insulator in such OFETs, is still unclear and appears to limit the transient current characteristics of the transistors. Here, the polarization response of a thin proton membrane, a poly(styrenesulfonic acid) film, is controlled by varying the relative humidity. The formation of the conducting transistor channel follows the polarization of the polyelectrolyte, such that the drain transient current characteristics versus the time are rationalized by three different polarization mechanisms: the dipolar relaxation at high frequencies, the ionic relaxation (migration) at intermediate frequencies, and the electric double-layer formation at the polyelectrolyte interfaces at low frequencies. The electric double layers of polyelectrolyte capacitors are formed in ,1,µs at humid conditions and an effective capacitance per area of 10,µF cm,2 is obtained at 1,MHz, thus suggesting that this class of OFETs might operate at up to 1,MHz at 1,V. [source] Modified principle of distributed ferroelectric phase shifter considering the influence of interconnecting linesMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 3 2008An Yu Abstract The deviation between theoretic values and real data of distributed ferroelectric phase shifter is investigated by simulating an ideal model and analyzing an equivalent circuit. The deviation is shown to come from the parasitic inductance of interconnecting lines between loaded capacitors and center strip of CPW, which reduces the Bragg frequency, increases the insertion loss and phase shift. By introducing an effective capacitance to consider the effect of interconnecting lines, a modified principle is presented, which forecasts performances better. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 748,751, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23212 [source] A switched-capacitor programmable gain amplifier using dynamic element matchingIEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 6 2007Jun Wang Non-member Abstract This paper discusses the effect of capacitor mismatch errors on gain accuracy of switched-capacitor programmable gain amplifier (SC PGA). To improve gain deviations caused by mismatch errors, the dynamic element matching (DEM) algorithm is applied to the SC PGA circuits. It uses digital gain-control signal to dynamically vary the matched capacitor combinations so that the effective capacitances of the sampling and feedback capacitor arrays are averaged, and thus the gain deviations due to capacitor mismatch errors are eliminated to a significant extent. The distortion caused by mismatch errors shift to certain frequency bands, and could be reduced or removed by subsequent processing such as lowpass filtering. A 4-bit SC PGA using DEM was designed in 0.25 µm CMOS process with 2.5 V voltage supply, including offset cancellation and clock bootstrapped circuits operating at a sampling frequency of 10 MHz. Test results have indicated that gain deviations due to mismatch errors are substantially reduced. Copyright © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source] |