Efflux System (efflux + system)

Distribution by Scientific Domains


Selected Abstracts


The Helicobacter hepaticus hefA Gene is Involved in Resistance to Amoxicillin

HELICOBACTER, Issue 1 2009
Clara Belzer
Abstract Background:, Gastrointestinal infections with pathogenic Helicobacter species are commonly treated with combination therapies, which often include amoxicillin. Although this treatment is effective for eradication of Helicobacter pylori, the few existing reports are less clear about antibiotic susceptibility of other Helicobacter species. In this study we have determined the susceptibility of gastric and enterohepatic Helicobacter species to amoxicillin, and have investigated the mechanism of amoxicillin resistance in Helicobacter hepaticus. Materials and methods:, The minimal inhibitory concentration (MIC) of antimicrobial compounds was determined by E -test and agar/broth dilution assays. The hefA gene of H. hepaticus was inactivated by insertion of a chloramphenicol resistance gene. Transcription was measured by quantitative real-time polymerase chain reaction. Results:, Three gastric Helicobacter species (H. pylori, H. mustelae, and H. acinonychis) were susceptible to amoxicillin (MIC < 0.25 mg/L). In contrast, three enterohepatic Helicobacter species (H. rappini, H. bilis, and H. hepaticus) were resistant to amoxicillin (MIC of 8, 16, and 6,64 mg/L, respectively). There was no detectable ,-lactamase activity in H. hepaticus, and inhibition of ,-lactamases did not change the MIC of amoxicillin of H. hepaticus. A H. hepaticus hefA (hh0224) mutant, encoding a TolC-component of a putative efflux system, resulted in loss of amoxicillin resistance (MIC 0.25 mg/L), and also resulted in increased sensitivity to bile acids. Finally, transcription of the hefA gene was not responsive to amoxicillin, but induced by bile acids. Conclusions:, Rodents are frequently colonized by a variety of enterohepatic Helicobacter species, and this may affect their global health status and intestinal inflammatory responses. Animal facilities should have treatment strategies for Helicobacter infections, and hence resistance of enterohepatic Helicobacter species to amoxicillin should be considered when designing eradication programs. [source]


Effect of the proton motive force inhibitor carbonyl cyanide- m -chlorophenylhydrazone (CCCP) on Pseudomonas aeruginosa biofilm development

LETTERS IN APPLIED MICROBIOLOGY, Issue 4 2008
A. Ikonomidis
Abstract Aims:, Proton motive force (PMF) inhibition enhances the intracellular accumulation of autoinducers possibly interfering with biofilm formation. We evaluated the effect of the PMF inhibitor carbonyl cyanide- m -chlorophenylhydrazone (CCCP) on Pseudomonas aeruginosa biofilm development. Methods and Results:, Four epidemiologically unrelated P. aeruginosa isolates were studied. A MexAB-oprM overproducing strain was used as control. Expression of gene mexB was examined and biofilm formation after incubation with 0, 12·5 and 25 ,mol l,1 of CCCP was investigated. Mean values of optical density were analysed with one-way analysis of variance and t -test. Two isolates subexpressed mexB gene and only 25 ,mol l,1 of CCCP affected biofilm formation. Biofilms of the other two isolates and control strain PA140 exhibited significantly lower absorbance (P ranging from <0·01 to <0·05) with either 12·5 or 25 ,mol l,1 of CCCP. Conclusions:, The PMF inhibitor CCCP effect was correlated with the expression of MexAB-OprM efflux system and found to compromise biofilm formation in P. aeruginosa. Significance and Impact of the Study:, These data suggest that inhibition of PMF-dependent trasporters might decrease biofilm formation in P. aeruginosa. [source]


Role of the MexXY multidrug efflux pump in moderate aminoglycoside resistance in Pseudomonas aeruginosa isolates from Pseudomonas mastitis

MICROBIOLOGY AND IMMUNOLOGY, Issue 8 2008
Rungtip Chuanchuen
ABSTRACT The contribution of the MexXY multidrug efflux system to aminoglycoside resistance was investigated in 18 clinical isolates of Pseudomonas aeruginosa obtained from dairy cows with Pseudomonas mastitis. All of the isolates expressed MexXY as determined by reverse transcription-PCR. The loss of mexXY resulted in increased susceptibility (two- to 16-fold decline in MIC) to aminoglycosides, confirming the contribution of this system in aminoglycoside resistance in these strains. As the impact of ,mexXY varied, overexpression of MexXY alone is not sufficient for aminoglycoside resistance. Expression of mexXY also varied and did not strictly correlate with aminoglycoside insusceptibility. Transcription levels of mexY were independent on mutations in mexZ, suggesting the existence of additional regulatory mechanisms other than mexZ. [source]


AcrA suppressor alterations reverse the drug hypersensitivity phenotype of a TolC mutant by inducing TolC aperture opening

MOLECULAR MICROBIOLOGY, Issue 6 2010
Jon W. Weeks
Summary In Escherichia coli, the TolC,AcrAB complex forms a major antibiotic efflux system with broad substrate specificity. During the complex assembly, the periplasmic helices and bottom turns of TolC are thought to interact with a hairpin helix of AcrA and hairpin loops of AcrB respectively. In the present study we show that a four-residue substitution in TolC's turn 1, which connects outer helices 3 and 4 proximal to TolC's periplasmic aperture, confers antibiotic hypersensitivity, without affecting TolC-mediated phage or colicin infection. However, despite the null-like drug sensitivity phenotype, chemical cross-linking analysis revealed no apparent defects in the ability of the mutant TolC protein to physically interact with AcrA and AcrB. A role for TolC turn 1 residues in the functional assembly of the tripartite efflux pump complex was uncovered through isolating suppressor mutations of the mutant TolC protein that mapped within acrA and by utilizing a labile AcrA protein. The data showed that AcrA-mediated suppression of antibiotic sensitivity was achieved by dilating the TolC aperture/channel in an AcrB-dependent manner. The results underscore the importance of the periplasmic turn 1 of TolC in the functional assembly of the tripartite efflux complex and AcrA in transitioning TolC from its closed to open state. [source]


A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis

MOLECULAR MICROBIOLOGY, Issue 4 2002
Ahmed Gaballa
Summary In Bacillus subtilis, hydrogen peroxide (H2O2) induces expression of the PerR regulon including catalase (KatA), alkyl hydroperoxide reductase and the DNA-binding protein MrgA. We have identified the P-type metal-transporting ATPase ZosA (formerly YkvW) as an additional member of the perR regulon. Expression of zosA is induced by H2O2 and repressed by the PerR metalloregulatory protein, which binds to two Per boxes in the promoter region. Physiological studies implicate ZosA in Zn(II) uptake. ZosA functions together with two Zur-regulated uptake systems and one known efflux system to maintain Zn(II) homeostasis. ZosA is the major pathway for zinc uptake in cells growing with micromolar levels of Zn(II) that are known to repress the two Zur-regulated transporters. A perR mutant is sensitive to high levels of zinc, and this sensitivity is partially suppressed by a zosA mutation. ZosA is important for resistance to both H2O2 and the thiol-oxidizing agent diamide. This suggests that increased intracellular Zn(II) may protect thiols from oxidation. In contrast, catalase is critical for H2O2 resistance but does not contribute significantly to diamide resistance. Growth of cells with elevated zinc significantly increases resistance to high concentrations of H2O2, and this effect requires ZosA. Our results indicate that peroxide stress leads to the upregulation of a dedicated Zn(II) uptake system that plays an important role in H2O2 and disulphide stress resistance. [source]


Crystallization and preliminary X-ray crystallographic analysis of Escherichia coli CusB

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 7 2009
Yongbin Xu
Periplasmic membrane-fusion proteins (MFPs) are an essential component of multidrug and metal-efflux pumps in Gram-negative bacteria. However, the functional structure of MFPs remains unclear. CusCFBA, the CuI and AgI efflux system in Escherichia coli, consists of the MFP CusB, the OMF CusC and the RND-type transporter CusA. The MFP CusB bridges the inner membrane RND-type efflux transporter CusA and the outer membrane factor CusC and exhibits substrate-linked conformational changes which distinguish it from other MFP-family members. CusB from E. coli was overexpressed and the recombinant protein was purified using Ni,NTA affinity, Q anion-exchange and gel-filtration chromatography. The purified CusB protein was crystallized using the vapour-diffusion method. A diffraction data set was collected to a resolution of 3.1,Å at 100,K. The crystal belonged to space group C222. [source]


Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase,

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2008
Shailendra Singh
Abstract Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (,-Glu-Cys)n moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and ,-glutamyl cysteine (,-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3, strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n,=,2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn2+ enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic. Biotechnol. Bioeng. 2008;99: 333,340. © 2007 Wiley Periodicals, Inc. [source]


Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients

CLINICAL MICROBIOLOGY AND INFECTION, Issue 1 2009
S. Islam
Abstract In total, 40 Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients were included in this study. Twenty of these were collected in 1994 and 1997, from six CF patients, and the rest were collected from different CF patients in 2000 and 2001. The relative expression of mRNA for the efflux pump protein MexY was determined by real-time PCR and correlated with susceptibilities to amikacin and tobramycin. The chromosomal genes mexZ, rplY, galU, PA5471 and nuoG, which were found to have a role in the gradual increase in MICs of aminoglycoside antibiotics in laboratory mutants of P. aeruginosa, were analysed. MexY mRNA overproduction was found in 17/20 isolates collected in 1994 and 1997, and was correlated with decreased susceptibility to aminoglycosides. Alteration of the MexXY,OprM efflux system has been the main mechanism of resistance to aminoglycoside antibiotics in CF P. aeruginosa isolates over the 3-year period. In several isolates, expression of the PA5471 gene product might have some effect on elevated MICs of aminoglycosides. Inactivation of rplY, galU and/or nuoG may explain the gradual increase in MICs of aminoglycosides in laboratory mutants but probably not in the CF environment, as rplY and galU were unaltered in all isolates, and nuoG was not expressed in only one isolate. No 16S rRNA A-site mutations were found in any of the four copies of the gene in 13 investigated isolates. [source]


Photodamage to Multidrug-resistant Gram-positive and Gram-negative Bacteria by 870 nm/930 nm Light Potentiates Erythromycin, Tetracycline and Ciprofloxacin

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2010
Eric Bornstein
We have previously shown that 870 nm/930 nm wavelengths cause photodamage at physiologic temperatures in methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli via generation of endogenous radical oxygen species (ROS) and decreased plasma membrane potentials (,,p). We tested MRSA (Strain HSJ216) in vitro with sublethal 870 nm/930 nm laser energy and subinhibitory concentrations of erythromycin, tetracycline, penicillin, rifampin and trimethoprim to surmise whether photodamage could potentiate these antimicrobials. We also tested patient isolates of fluoroquinolone-resistant MRSA and E. coli with subinhibitory concentrations of ciprofloxacin. In MRSA (Strain HSJ216) we observed 97% potentiation (a 1.5 log10 CFU decrease) with erythromycin and tetracycline. In patient isolates of E. coli, we observed 100% potentiation (>3 log10 CFU decrease) in all irradiated samples with ciprofloxacin. To assess whether staphyloxanthin pigment conferred protection against the generated ROS, we created an isogenic carotenoid-deficient mutant of S. aureus that was significantly less tolerant of 870 nm/930 nm exposure than the wild type strain (P < 0.0001). We suggest that antibiotic potentiation results from a photobiological attenuation of ATP-dependent macromolecular synthetic pathways, similar to that observed with daptomycin, via disruption of ,,p and endogenous generation of ROS. With erythromycin, tetracycline and ciprofloxacin, attenuation of energy-dependent efflux systems is also a possibility. [source]


The properties of the Mn, Ni and Pb transport operating at plasma membranes of cucumber roots

PHYSIOLOGIA PLANTARUM, Issue 3 2007
Magdalena Migocka
To avoid metal toxicity, plants have developed mechanisms including efflux of metal ions from cells and their sequestration into cellular compartments. In this report, we present evidence for the role of plasma membrane efflux systems in metal tolerance of cucumber roots. We have identified the plasma membrane-transport system participating in Cd, Pb, Mn and Ni efflux from the cytosol. Kinetic characterization of this proton-coupled transport system revealed that it is saturable and has a different affinity for each of the metal ions used (with Km 5, 7.5 and 0.1 mM for Mn, Ni and Pb, respectively). Treatment of cucumber roots with 100 ,M Cd prior to the transport measurements caused a great increase (over 250%) in Cd antiport activity in plasmalemma vesicles. After decreasing the metal concentration to 50 ,M we still observed a large increase (over 150%) of this activity in comparison with the control. Moreover, the addition of 50 ,M Cd to the external solution stimulated not only Cd antiport in the plasmalemma vesicles but also the antiport of other metals used in the experiments. Treatment of cucumber roots with 50 ,M Ni revealed a similar effect: the antiport activity of Cd, Mn, Ni and Pb was stimulated, although to a lesser extent in comparison with stimulation by Cd. The data indicate that the root plasma membrane antiporter system is stimulated by the exogenous presence of heavy metals. [source]


Evidence for efflux pumps, other than PmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae

CLINICAL MICROBIOLOGY AND INFECTION, Issue 2 2003
N. P. Brenwald
Fluoroquinolone resistance in pneumococci is known to be associated with the efflux pump, PmrA. However, there may be other efflux systems that also cause drug resistance. Two types of mutants were studied. The efflux phenotype from mutants selected by sub-MIC levofloxacin or gemifloxacin was transformed into R6. These transformants did not show increased pmrA transcripts in Northern blots; insertional inactivation of pmrA in the transformants did not abolish the efflux phenotype. A second set of efflux phenotype mutants was selected in R6:cat by ethidium bromide but not by norfloxacin; accumulation of ethidium bromide in the one among these mutants studied was reduced in comparison to its parent. This evidence suggests that systems other than PmrA can contribute to efflux-mediated resistance in pneumococci. [source]